Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo giữa học kì 1 (HK1) Toán 9 năm 2022 2023 phòng GD ĐT Hóc Môn TP HCM

Nội dung Đề tham khảo giữa học kì 1 (HK1) Toán 9 năm 2022 2023 phòng GD ĐT Hóc Môn TP HCM Bản PDF - Nội dung bài viết Sytu giới thiệu bộ đề tham khảo Toán 9 HK1 2022-2023 Sytu giới thiệu bộ đề tham khảo Toán 9 HK1 2022-2023 Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 bộ đề tham khảo kiểm tra chất lượng giữa học kỳ 1 môn Toán. Bộ đề này được biên soạn theo hình thức 100% tự luận, thời gian làm bài 90 phút để giúp các em ôn tập và kiểm tra kiến thức một cách hiệu quả. Bộ đề bao gồm các đề số: 1. Trường THCS Nguyễn Hồng Đào. 2. Trường THCS Xuân Thới Thượng. 3. Trường THCS Đặng Công Bỉnh. 4. Trường THCS Phan Công Hớn. 5. Trường THCS Nguyễn An Khương. 6. Trường THCS Trung Mỹ Tây 1. 7. Trường THCS Tân Xuân. 8. Trường THCS Tam Đông 1. 9. Trường THCS Lý Chính Thắng 1. 10. Trường THCS Tô Ký. 11. Trường THCS Thị Trấn. 12. Trường THCS Đỗ Văn Dậy. 13. Đề Bổ Sung. Hy vọng rằng bộ đề tham khảo này sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi giữa học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Phan Chu Trinh - Hà Nội
Đề thi giữa học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Phan Chu Trinh – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 80 phút (tính từ lúc mở đề), kỳ thi được diễn ra vào thứ Bảy ngày 06 tháng 11 năm 2021. Trích dẫn đề thi giữa học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Phan Chu Trinh – Hà Nội : + Một bể bơi hình chữ nhật có chiều dài đường chéo là 16m. Góc tạo bởi đường chéo và chiều rộng là 68 độ. Tính chiều dài và chiều rộng của bể bơi (kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho tam giác ABC nhọn (AB < AC), đường cao AD. Gọi E, F lần lượt là hình chiếu vuông góc của D trên AB, AC. a) Biết AF = 3,6 cm; FC = 6,4 cm. Tính DF và diện tích tam giác ADC. b) Chứng minh tam giác AEF đồng dạng với tam giác ACB. c) Chứng minh: tan3C = BE/CF. + Cho hai số a, b thỏa mãn điều kiện a > 0 và a + b >= 1. Tìm giá trị nhỏ nhất của biểu thức A.
Đề thi giữa kì 1 Toán 9 năm 2021 - 2022 trường M.V. Lômônôxốp - Hà Nội
Đề thi giữa kì 1 Toán 9 năm 2021 – 2022 trường THCS & THPT M.V. Lômônôxốp – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2021 – 2022 trường M.V. Lômônôxốp – Hà Nội : + (1,5 điểm) Cho hàm số bậc nhất y = 2x + 3 có đồ thị là đường thẳng (d). a) (1,0 điểm) Trong mặt phẳng tọa độ Oxy, vẽ đường thẳng (d); b) (0,5 điểm) Tính khoảng cách từ điểm N(0;1) đến đường thẳng (d). + (0,5 điểm) Hình vẽ bên minh họa một cái thang dài 5m dựa vào tường. Tính xem thang chạm tường ở độ cao bao nhiêu mét so với mặt đất, biết góc tạo bởi chân thang và mặt đất là 62 độ (góc an toàn – tức là đảm bảo thang không bị đổ khi sử dụng) (Kết quả làm tròn đến chữ số thập phân thứ hai). + (3 điểm) Cho tam giác ABC nhọn, đường cao AH. Gọi E là hình chiếu của H lên AB. a) (1,25 điểm) Biết AB = 3cm; BE = 2cm. Tính độ dài HD và góc ABC (số đo góc làm tròn đến độ); b) (1,25 điểm) Kẻ HF vuông góc với AC tại F. (0,75 điểm) Chứng minh bốn điểm A, E, H, F cùng thuộc một đường tròn; (0,5 điểm) Gọi D là trung điểm của HC. Chứng minh FD là tiếp tuyến của đường tròn đi qua 4 điểm A, E, H, F; (0,5 điểm) Gọi I là giao điểm các đường phân giác các góc trong của tam giác ABC. Gọi là khoảng cách từ 1 đến cạnh BC. Chứng minh r/AH < 1/2.
Đề thi giữa học kì 1 Toán 9 năm 2021 - 2022 trường Lương Thế Vinh - Hà Nội
Đề thi giữa học kì 1 Toán 9 năm 2021 – 2022 trường Lương Thế Vinh – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 60 phút. Trích dẫn đề thi giữa học kì 1 Toán 9 năm 2021 – 2022 trường Lương Thế Vinh – Hà Nội : + Cho đường thẳng: y = (m2 – 2m)x + 3 – 2m (d). a) Cho m = 1. Vẽ đường thẳng (d). b) Tìm m để đường thẳng (d) song song với đường thẳng y = 3x + 5. + Cho nửa đường tròn (O), đường kính AB và điểm C thuộc nửa đường tròn đó. Từ C kẻ CH vuông góc với AB (H thuộc AB). Gọi M là hình chiếu của H trên AC, N là hình chiếu của H trên BC. a) Chứng minh tứ giác HMCN là hình chữ nhật b) Chứng minh MN là tiếp tuyến của đường tròn đường kính BH. c) Đường thẳng MN cắt (O) tại E và F. Chứng minh rằng: CEF cân. + Cho các số dương x, y, z thỏa mãn: x + 2y + 3z >= 20. Tìm giá trị nhỏ nhất của biểu thức A = x + y + z + 3/x + 9/2y + 4/z.
Đề thi giữa học kỳ 1 Toán 9 năm 2020 - 2021 sở GDĐT Bắc Ninh
Đề thi giữa học kỳ 1 Toán 9 năm 2020 – 2021 sở GD&ĐT Bắc Ninh được biên soạn theo hình thức đề thi 40% trắc nghiệm + 60% tự luận (theo điểm số), thời gian làm bài 90 phút (không kể thời gian giao đề). Trích dẫn đề thi giữa học kỳ 1 Toán 9 năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Cho hình chữ nhật ABCD. Kẻ AH vuông góc với BD tại H. Đường thẳng AH cắt BC tại M và cắt DC tại N. a) Cho AB cm6 BC cm8 tính độ dài đoạn thẳng BD AH b) Chứng minh 2 HN BH BD AH AN. + Cho 32 58 khẳng định nào sau đây là đúng? A. sin sin B. sin cos C. tan tan D. cos sin. + Cho tam giác ABC vuông tại A biết BC cm 10 B 30. Khi đó độ dài cạnh AC bằng?