Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

50 dạng toán phát triển đề minh họa THPT QG 2020 môn Toán lần 1

Tài liệu gồm 778 trang, được biên soạn bởi tập thể quý thầy, cô giáo nhóm GeoGebra Pro, tuyển tập 50 dạng toán phát triển đề minh họa THPT QG 2020 môn Toán lần 1, giúp học sinh ôn tập để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2019 – 2020. Dạng toán 1. Phép đếm. Dạng toán 2. Cấp số cộng – cấp số nhân. Dạng toán 3. Sử dụng các công thức liên quan đến hình nón. Dạng toán 4. Xét sự đơn điệu dựa vào bảng biến thiên. Dạng toán 5. Thể tích khối lăng trụ đều. Dạng toán 6. Giải phương trình – bất phương trình logarit. Dạng toán 7. Sử dụng tính chất của tích phân. Dạng toán 8. Cực trị hàm số. Dạng toán 9. Khảo sát hàm số – nhận dạng hàm số, đồ thị. Dạng toán 10. Sử dụng tính chất của logarit. Dạng toán 11. Tính nguyên hàm bằng cách sử dụng tính chất của nguyên hàm. Dạng toán 12. Khái niệm số phức. Dạng toán 13. Bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ. Dạng toán 14. Xác định tâm, bán kính, diện tích, thể tích của mặt cầu. Dạng toán 15. Xác định vectơ pháp tuyến của mặt phẳng. Dạng toán 16. Phương trình đường thẳng. Dạng toán 17. Xác định góc giữa hai đường thẳng, đường thẳng và mặt phẳng, hai mặt phẳng. Dạng toán 18. Đếm số điểm cực trị dựa vào bảng biến thiên. Dạng toán 19. Tìm giá trị lớn nhất- giá trị nhỏ nhất của hàm số trên một đoạn. Dạng toán 20. Biến đổi biểu thức lôgarit. Dạng toán 21. Phương trình, bất phương trình mũ và logarit. Dạng toán 22. Khối trụ. Dạng toán 23. Liên quan giao điểm từ hai đồ thị. Dạng toán 24. Nguyên hàm cơ bản. Dạng toán 25. Toán thực tế sử dụng hàm mũ và lôgarit. [ads] Dạng toán 26. Tính thể tích khối lăng trụ đứng. Dạng toán 27. Tiệm cận của đồ thị hàm số. Dạng toán 28. Tính chất đồ thị – hàm số – đạo hàm. Dạng toán 29. Ứng dụng tích phân. Dạng toán 30. Các phép toán số phức. Dạng toán 31. Biểu diễn hình học của số phức. Dạng toán 32. Tích vô hướng của hai vectơ trong không gian. Dạng toán 33. Viết phương trình mặt cầu. Dạng toán 34. Phương trình mặt phẳng liên quan đến đường thẳng. Dạng toán 35. Tìm véc-tơ chỉ phương của đường thẳng. Dạng toán 36. Tính xác suất của biến cố bằng định nghĩa. Dạng toán 37. Khoảng cách giữa hai đường thẳng chéo nhau. Dạng toán 38. Tích phân cơ bản (a), kết hợp (b). Dạng toán 39. Tìm tham số để hàm số bậc 1 trên bậc 1 đơn điệu. Dạng toán 40. Khối nón. Dạng toán 41. Lôgarit. Dạng toán 42. Max, min của hàm trị tuyệt đối có chứa tham số. Dạng toán 43. Phương trình logarit có chứa tham số. Dạng toán 44. Nguyên hàm từng phần. Dạng toán 45. Liên quan đến giao điểm của hai đồ thị. Dạng toán 46. Tìm cực trị của hàm số hợp f(u(x)) khi biết đồ thị hàm số. Dạng toán 47. Ứng dụng phương pháp hàm số giải phương trình mũ và logarit. Dạng toán 48. Tích phân liên quan đến phương trình hàm ẩn. Dạng toán 49. Tính thể tích khối chóp biết góc giữa hai mặt phẳng. Dạng toán 50. Tính đơn điệu của hàm số liên kết. Mỗi dạng toán gồm ba phần: Kiến thức cần nhớ; Bài tập mẫu; Bài tập tương tự và phát triển, có đáp án và lời giải chi tiết.

Nguồn: toanmath.com

Đọc Sách

40 bài toán tối ưu thực tế có lời giải chi tiết Nguyễn Minh Đức
Nội dung 40 bài toán tối ưu thực tế có lời giải chi tiết Nguyễn Minh Đức Bản PDF - Nội dung bài viết Tài liệu 40 bài toán tối ưu thực tế với lời giải chi tiết Tài liệu 40 bài toán tối ưu thực tế với lời giải chi tiết Tài liệu "40 bài toán tối ưu thực tế" được biên soạn bởi tác giả Nguyễn Minh Đức, bao gồm 30 trang với 40 bài toán được lựa chọn kỹ càng từ thực tế, cung cấp đáp án và lời giải chi tiết. Tài liệu này là nguồn tư liệu hữu ích cho những ai quan tâm đến tối ưu hóa trong thực tế và muốn nắm vững cách giải quyết các bài toán phức tạp.
Giải chi tiết 214 bài toán trắc nghiệm ứng dụng thực tiễn Trần Thông
Nội dung Giải chi tiết 214 bài toán trắc nghiệm ứng dụng thực tiễn Trần Thông Bản PDF - Nội dung bài viết Giải chi tiết 214 bài toán trắc nghiệm ứng dụng thực tiễn Trần Thông Giải chi tiết 214 bài toán trắc nghiệm ứng dụng thực tiễn Trần Thông Tài liệu này bao gồm 120 trang với 214 bài toán thực tế và chi tiết lời giải. Dưới đây là một số ví dụ từ tài liệu: - Một công ty muốn xây đường ống từ bờ biển đến một hòn đảo. Chi phí xây trên bờ là 50.000USD/km, và dưới nước là 130.000USD/km. B’ là điểm sao cho BB’ vuông góc với bờ biển. Tìm vị trí C trên đoạn AB’ để chi phí xây ống theo ACB là ít nhất. - Tấm gỗ hình vuông cạnh 200cm muốn cắt thành tấm tam giác vuông sao cho diện tích lớn nhất. Hãy tính cạnh huyền của tấm gỗ mới. - Ông A muốn mua tặng vợ một món quà trong chiếc hộp có dạng hình vuông và mạ vàng. Tính chiều cao và cạnh đáy của hộp để lượng vàng là ít nhất. Những bài toán này sẽ giúp bạn hiểu rõ các khái niệm toán học qua các tình huống thực tế, và cách giải quyết chúng một cách logic và chi tiết. Đây là tài liệu hữu ích cho việc ôn tập và rèn luyện kỹ năng giải toán của bạn.
Tuyển tập một số bài toán ứng dụng thực tiễn Võ Thanh Bình
Nội dung Tuyển tập một số bài toán ứng dụng thực tiễn Võ Thanh Bình Bản PDF - Nội dung bài viết Tuyển tập một số bài toán ứng dụng thực tiễn của Võ Thanh Bình Tuyển tập một số bài toán ứng dụng thực tiễn của Võ Thanh Bình Tài liệu này bao gồm một số bài toán ứng dụng thực tiễn được phân loại theo dạng bài và mức độ vận dụng. Dưới đây là một số ví dụ: 1. Bài toán về con kiến trong cốc: Có một cái cốc úp ngược với chiều cao 20cm, bán kính đáy là 3cm và bán kính miệng là 4cm. Con kiến đứng ở điểm A trên miệng cốc và muốn bò từ A đến điểm B ở đáy cốc. Hỏi con kiến phải bò quãng đường ngắn nhất là bao nhiêu? 2. Bài toán về cho thuê căn hộ: Một công ty bất động sản có 50 căn hộ cho thuê. Nếu giá thuê mỗi căn hộ là 2 triệu đồng/tháng, thì tất cả các căn hộ đều có người thuê. Tuy nhiên, nếu tăng giá thuê lên 100,000 đồng/tháng, thì có thêm hai căn hộ bị bỏ trống. Hỏi để có thu nhập cao nhất, công ty cần đặt giá thuê mỗi căn hộ là bao nhiêu? 3. Bài toán về xây đường ống dẫn nước: Một công ty muốn xây một đường ống dẫn từ điểm A trên bờ đến điểm B trên hòn đảo, với giá xây trên bờ là 50,000 USD/km và dưới nước là 130,000 USD/km. Tìm vị trí trên đoạn bờ mà khi nối ống theo hình tam giác thì chi phí ít nhất. Đây chỉ là một số ví dụ trong tuyển tập bài toán ứng dụng thực tiễn của Võ Thanh Bình, hi vọng sẽ giúp bạn rèn luyện kỹ năng giải quyết bài toán và áp dụng kiến thức vào thực tế một cách linh hoạt và sáng tạo!
Tổng hợp các bài toán mức độ vận dụng cao ôn thi THPT Quốc gia – Nhóm Toán
Nội dung Tổng hợp các bài toán mức độ vận dụng cao ôn thi THPT Quốc gia – Nhóm Toán Bản PDF - Nội dung bài viết Tổng hợp các bài toán mức độ vận dụng cao ôn thi THPT Quốc gia – Nhóm Toán Tổng hợp các bài toán mức độ vận dụng cao ôn thi THPT Quốc gia – Nhóm Toán Bộ tài liệu này bao gồm 94 trang với các bài toán mức độ vận dụng cao, được thiết kế để ôn luyện cho kỳ thi THPT Quốc gia 2017. Với những bài toán này, bạn sẽ có cơ hội ôn luyện để đạt điểm cao 9, 10 trong kỳ thi. Trích dẫn một số câu hỏi trong tài liệu: Một đoàn tàu di chuyển trên một đường thẳng ngang với vận tốc không đổi v0. Khi tắt máy, lực hãm và lực cản tổng hợp cả đoàn tàu bằng 1/10 trọng lượng của nó. Hỏi chuyển động của đoàn tàu sau khi tắt máy và hãm là gì? Một thanh AB dài 2a ban đầu được giữ ở góc nghiêng α = α0 với một đầu không ma sát với bức tường thẳng đứng. Khi buông thanh, nó sẽ trượt xuống dưới tác động của trọng lực. Hãy tính góc α theo thời gian t. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M là trung điểm của AD. Tính tỉ số thể tích của hai khối chóp S’.BCDM và S.ABCD. Với bộ tài liệu này, bạn sẽ được tiếp cận với những bài toán phức tạp và có cấu trúc logic sắc nét, giúp bạn nâng cao kiến thức và kỹ năng giải toán. Hãy cùng ôn luyện và chuẩn bị tốt nhất cho kỳ thi sắp tới!