Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL học kỳ 1 Toán 12 năm 2020 - 2021 trường chuyên Đại học Vinh - Nghệ An

Đề KSCL học kỳ 1 Toán 12 năm 2020 – 2021 trường chuyên Đại học Vinh – Nghệ An được biên soạn theo dạng đề thi 100% trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề KSCL học kỳ 1 Toán 12 năm 2020 – 2021 trường chuyên Đại học Vinh – Nghệ An : + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với (ABC). Tâm của mặt cầu ngoại tiếp hình chóp S.ABC là: A. Trung điểm của SA. B. Trung điểm của SC. C. Trung điểm của SB. D. Trung điểm của AC. + Một nguồn âm đẳng hướng phát ra từ điểm O. Mức cường độ âm tại điểm M cách O một khoảng R được tính bởi công thức LM = log k/R2 (Ben), với k > 0 là hằng số. Biết điểm O thuộc đoạn thẳng AB và mức cường độ âm tại A và B lần lượt là LA = 4,3 (Ben) và LB = 5 (Ben). Mức cường độ âm tại trung điểm của AB bằng (làm tròn đến hai chữ số thập phân). + Mỗi mặt của hình bát diện đều là: A. Hình vuông. B. Tam giác đều. C. Bát giác đều. D. Ngũ giác đều.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL đầu năm 2018 - 2019 môn Toán 12 trường THPT Lê Văn Thịnh - Bắc Ninh
Đề KSCL đầu năm 2018 – 2019 môn Toán 12 trường THPT Lê Văn Thịnh – Bắc Ninh mã đề 132 được biên soạn theo hình thức tương tự như đề thi THPT Quốc gia với 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong thời gian 90 phút, kỳ thi được tổ chức vào ngày 16/09/2018. Nội dung kiểm tra hướng đến gồm: nội dung chương trình Toán 11, chủ đề khảo sát và đồ thị hàm số, khối đa diện và thể tích. Đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL đầu năm 2018 – 2019 môn Toán 12 trường THPT Lê Văn Thịnh – Bắc Ninh : + Cho hàm số y = f(x) có đạo hàm trên đoạn [a;b]. Ta xét các khẳng định sau: (1) Nếu hàm số y = f(x) đạt cực đại tại điểm x0 ∈ (a;b) thì f(x0) là giá trị lớn nhất của f(x) trên [a;b]. (2) Nếu hàm số y = f(x) đạt cực đại tại điểm x0 ∈ (a;b) thì f(x0) là giá trị nhỏ nhất của f(x) trên [a;b]. (3) Nếu hàm số f(x) đạt cực đại tại điểm x0 và đạt cực tiểu tại điểm x1 (x0, x1 ∈ (a;b)) thì ta luôn có f(x0) > f(x1). Số khẳng định đúng là? [ads] + Cho hai đường thẳng cố định a và b chéo nhau. Gọi AB là đoạn vuông góc chung của a và b (A thuộc a, B thuộc b). Trên a lấy điểm M (khác A), trên b lấy điểm N (khác B ) sao cho AM = x, BN = y, x + y = 8. Biết AB = 6, góc giữa hai đường thẳng a và b bằng 60 độ. Khi thể tích khối tứ diện ABNM đạt giá trị lớn nhất hãy tính độ dài đoạn MN (trong trường hợp MN = 8). + Cho hàm số y = (x + 1)/(2 – x). Khẳng định nào sau đây đúng? A. Hàm số đã cho đồng biến trên từng khoảng xác định của nó. B. Hàm số đã cho đồng biến trên khoảng (-∞;2) ∪ (2;+∞). C. Hàm số đã cho đồng biến trên R. D. Hàm số đã cho nghịch biến trên từng khoảng xác định của nó.
Đề KSCL Toán 12 năm 2018 trường THPT số 2 An Nhơn - Bình Định lần 3
Đề KSCL Toán 12 năm 2018 trường THPT số 2 An Nhơn – Bình Định lần 3 mã đề 209 nằm trong chuyên mục đề thi thử môn Toán hướng đến kỳ thi THPT Quốc gia 2018, đề 07 trang với 50 câu hỏi trắc nghiệm khách quan, thí sinh có 90 phút để làm bài thi. Trích dẫn đề KSCL Toán 12 năm 2018 trường THPT số 2 An Nhơn – Bình Định lần 3 : + Người dân Bình Định truyền nhau câu ca dao: “Muốn ăn bánh ít lá gai – Lấy chồng Bình Định sợ dài đường đi”. Muốn ăn bánh ít lá gai thì bạn phải tìm về với xứ Tuy Phước – Bình Định. Nơi đây nổi tiếng trứ danh với món bánh nghe cái tên khá lạ lẫm “Bánh ít lá gai” và hương vị làm say đắm lòng người. Trong một lô sản phẩm trưng bày bánh ít lá gai ở hội chợ ẩm thực huyện Tuy Phước gồm 40 chiếc bánh, 25 chiếc bánh có nhiều hạt mè và 15 chiếc bánh có ít hạt mè, một du khách muốn chọn 5 chiếc bánh, tính xác xuất để du khách đó chọn được ít nhất 2 chiếc bánh có nhiều hạt mè. (các chiếc bánh có khả năng được chọn là như nhau). [ads] + Du khách ghé thăm Bình Định không thể bỏ qua địa danh Tháp Bánh Ít nổi tiếng, nằm ở vị trí thấp nhất là tháp cổng cách tháp chính 100 mét. Tháp cổng được trang trí khá đơn giản nhưng lại trông vô cùng khỏe khoắn, vững chãi. Tháp có hai cửa nằm cùng một trục với tháp chính, hướng Đông – Tây để tạo nên sự hòa hợp về mặt kiến trúc và có hình dáng là một cung Parabol, hai cửa cách nhau 8 mét, có chiều cao 4 mét, lối đi rộng 1 mét thông hai cửa với nhau. Hãy tính thể tích phần không gian lối đi giới hạn giữa hai cửa. + Bình Định có câu ca dao: “Cưới nàng đôi nón Gò Găng – Xấp lãnh An Thái một khăn trầu nguồn”. Nói đến câu ca dao này là nói đến một làng nghề truyền thống có hàng trăm năm tuổi của thị xã An Nhơn, tỉnh Bình Định – làng nghề làm nón lá Gò Găng. Nhân kỷ niệm 10 năm được công nhận thị xã, thị xã An Nhơn lên kế hoạch làm các mô hình biểu tượng làng nghề truyền thống trên địa bàn, trong đó có mô hình chiếc nón lá Gò Găng. Chiếc nón có bán kính đáy 1 mét và chiều cao 1,5 mét; khung thép dùng làm đường tròn đáy và 10 đường nối từ đỉnh của nón đến đường tròn đáy có giá thành 40.000 đồng/mét; lá của cây lá nón Licuala Fatoua Becc dùng để làm mặt nón có giá thành 20.000 đồng/mét vuông. Hỏi kinh phí để làm chiếc nón biểu tượng này là bao nhiêu? (bỏ qua diện tích các mép nối và làm tròn đến nghìn đồng).
Đề KSCL Toán 12 năm 2017 - 2018 trường Sào Nam - Quảng Nam lần 3
Đề KSCL Toán 12 năm 2017 – 2018 trường Sào Nam – Quảng Nam lần 3 nằm trong chuyên mục đề thi thử môn Toán hướng đến kỳ thi THPT Quốc gia năm 2018, đề gồm 05 trang với 50 câu hỏi trắc nghiệm, thí sinh làm bài trong thời gian 90 phút. Trích dẫn đề KSCL Toán 12 năm 2017 – 2018 trường Sào Nam – Quảng Nam lần 3 : + Gọi X là tập hợp tất cả các số tự nhiên có 8 chữ số lập từ các chữ số 1, 2, 3, 4, 5, 6. Chọn ngẫu nhiên một số trong tập hợp X. Xác suất để số chọn ra có đúng ba chữ số 1, các chữ số còn lại đôi một khác nhau và hai chữ số chẵn không đứng cạnh nhau bằng. [ads] + Cho hình trụ có trục OO’ và có bán kính đáy bằng 4. Một mặt phẳng song song với trục OO’ và cách OO’ một khoảng bằng 2 cắt hình trụ theo thiết diện là một hình vuông. Diện tích xung quanh của hình trụ đã cho bằng? + Cho số phức z thỏa mãn |z – 3 + 4i| = 5. Biết rằng tập hợp điểm trong mặt phẳng tọa độ biểu diễn các số phức w = 2z + 4 – i là đường tròn có tâm I(a;b), bán kính R. Tổng a + b + R bằng?
Đề KSCL Toán 12 năm 2018 trường THPT số 2 An Nhơn - Bình Định lần 2
Đề KSCL Toán 12 năm 2018 trường THPT số 2 An Nhơn – Bình Định lần 2 mã đề 209 nằm trong chuyên mục đề thi thử môn Toán hướng đến kỳ thi THPT Quốc gia năm 2018, đề gồm 8 trang với 50 câu hỏi trắc nghiệm, thí sinh làm bài trong 90 phút. Trích dẫn đề thi thử Toán 2018 THPT số 2 An Nhơn – Bình Định lần 2 : + Có hai thùng đựng rượu Bầu Đá,một loại rượu nổi tiếng của thị xã An Nhơn, tỉnh Bình Định. Thùng thứ nhất đựng 10 chai gồm 6 chai rượu loại một và 4 chai rượu loại hai. Thùng thứ hai đựng 8 chai gồm 5 chai rượu loại một và 3 chai rượu loại hai. Lấy ngẫu nhiên mỗi thùng một chai, tính xác suất để lấy được ít nhất 1 chai rượu loại một. Biết rằng các chai rượu giống nhau về hình thức (rượu loại một và loại hai chỉ khác nhau về nồng độ cồn) và khả năng được chọn là như nhau. [ads] + Theo thống kê tài chính của thị xã An Nhơn, tỉnh Bình Định, trong dịp Tết Nguyên Đán năm 2015, làng nghề trồng mai cảnh xã Nhơn An đạt tổng doanh thu khoảng 15 tỷ đồng nhờ vào việc bán mai cảnh. Biết rằng trong các năm tiếp theo tổng doanh thu luôn tăng ổn định và doanh thu trong năm đó cao hơn so với năm trước 6,27%. Hỏi tổng doanh thu của làng nghề trồng mai cảnh xã Nhơn An vào dịp Tết Nguyên Đán năm 2018 là bao nhiêu? (làm tròn đến tỷ đồng). + Từ độ cao 55,8 mét của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng 1/10 độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất thuộc khoảng nào trong các khoảng sau đây?