Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chuyên đề Toán 12 lần 1 năm 2021 - 2022 trường chuyên Lương Văn Tụy - Ninh Bình

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chuyên đề môn Toán lớp 12 lần 1 năm học 2021 – 2022 trường THPT chuyên Lương Văn Tụy, tỉnh Ninh Bình; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi chuyên đề Toán 12 lần 1 năm 2021 – 2022 trường chuyên Lương Văn Tụy – Ninh Bình : + Bạn A định làm một cái hộp quà lưu niệm (không nắp) bằng cách cắt từ một tấm bìa hình tròn bán kính 4cm để tạo thành một khối lăng trụ lục giác đều, biết 6 hình chữ nhật có các kích thước là 1cm và xcm (tham khảo hình vẽ). Thể tích của hộp quà gần nhất với giá trị nào sau đây? + Cho hàm số y x ln có đồ thị (C) như hình vẽ. Đường tròn tâm A có duy nhất một điểm chung B với (C). Biết C(0;1), diện tích của hình thang ABCO gần nhất với số nào sau đây. + Một hình trụ có độ dài đường cao bằng 4, các đường tròn đáy lần lượt là (O;1) và (O’;1). Giả sử AB là một day cung cố định trên (O;1) sao cho AOB = 120 và MN là đường kính thay đổi trên (O’;1). Giá trị lớn nhất của thể tích khối tứ diện ABMN là?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2017 môn Toán - VnMath lần 1
Đề thi thử THPT Quốc gia 2017 môn Toán lần 1 trên diễn đàn toán học VnMath gồm 50 câu hỏi trắc nghiệm.
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Khánh Hòa
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Khánh Hòa có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số phân thức hữu tỉ. Câu 2: Tìm m để hàm số đồng biến trên tập số thực. Câu 3: a) Giải bất phương trình mũ. b) Trong mặt phẳng (Oxy), tìm tập hợp điểm biểu diễn số phức z thỏa mãn. Câu 4: Tính tích phân. Câu 5: Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu tâm I(1; 2;1) đồng thời tiếp xúc với đường thẳng d. Câu 6: a) Tìm số hạng không chứa x trong khai triển nhị thức. b) Tính giá trị của biểu thức lượng giác. Câu 7: a) Tính theo a thể tích khối chóp S.ABCD. b) Xác định và tính theo a độ dài đoạn vuông góc chung của SA và CD. Câu 8: Viết phương trình BC. Câu 9: Giải hệ phương trình. Câu 10: Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Tây Ninh
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Tây Ninh có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số bậc 3. Câu 2: Tìm giá trị lớn nhất và nhỏ nhất của hàm số. Câu 3: a) Tìm số phức z và tính môđun của z. b) Giải phương trình logarit. Câu 4: Tính tích phân. Câu 5: a) Viết phương trình mặt phẳng (P) đi qua điểm A và vuông góc với đường thẳng AB. b) Tìm điểm C thuộc trục x’Ox sao cho tam giác ABC vuông tại A. Câu 6: a) Giải giá trị của biểu thức lượng giác. b) Có 6 học sinh An, Bình, Xuân, Hạ, Thu, Đông tham gia công tác của trường. Nhà trường chia ngẫu nhiên các học sinh đó thành hai nhóm, mỗi nhóm 3 người. Tính xác suất để An và Bình ở chung một nhóm. Câu 7: Tính thể tích lăng trụ ABC.A’B’C’ và khoảng cách giữa hai đường thẳng AC và BA’ theo a. Câu 8: Tìm tọa độ các đỉnh của hình chữ nhật ABCD. Câu 9: Giải hệ phương trình. Câu 10: Tìm giá trị lớn nhất của biểu thức P.
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Hải Phòng
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Hải Phòng có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số phân thức hữu tỉ. Câu 2: Tìm giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn. Câu 3: a) Tìm môđun của số phức w = 3 + 4z. b) Giải bất phương trình logarit. Câu 4: Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số và trục hoành. Câu 5: Tìm tọa độ điểm I thuộc đường thẳng d sao cho khoảng cách từ I đến mặt phẳng (a) bằng 2. Câu 6: a) Giải phương trình lượng giác. b) Trong lễ khai mạc Hội khỏe Phù Đổng của trường THPT X, ban khánh tiết chọn đồng thời 5 bạn trong số 22 bạn lớp trưởng để đón tiếp khách. Tính xác suất trong 5 bạn được chọn có cả nam và nữ, biết trong 22 bạn lớp trưởng có 8 nam và 14 nữ. Câu 7: Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SM và AC. Câu 8: Tìm tọa độ các đỉnh của hình bình hành ABCD, biết đỉnh C có hoành độ dương. Câu 9: Giải phương trình. Câu 10: Tìm giá trị nhỏ nhất của biểu thức Q.