Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết và các dạng bài tập môn Toán 12 - Lê Doãn Thịnh

Tài liệu gồm 264 trang, được sưu tầm và biên soạn bởi thầy giáo Lê Doãn Thịnh (trung tâm GDNN – GDTX TP Thuận An, tỉnh Bình Dương), bao gồm tóm tắt lý thuyết và các dạng bài tập môn Toán 12. PHẦN I GIẢI TÍCH 3. CHƯƠNG 1 ỨNG DỤNG ĐẠO HÀM. KHẢO SÁT HÀM SỐ 5. 1 SỰ ĐỒNG BIẾN – NGHỊCH BIẾN CỦA HÀM SỐ 5. + Dạng 1. Xét tính đơn điệu của hàm số cho bởi biểu thức. + Dạng 2. Tìm tham số m để hàm bậc ba, hàm nhất biến đơn điệu trên tập xác định hoặc từng khoảng xác định. + Dạng 3. Tìm tham số m để hàm số y = (ax + b)/(cx + d) đơn điệu trên một khoảng (m;n). + Dạng 4. Hàm số bậc ba y = ax3 + bx2 + cx + d (a khác 0) đơn điệu trên khoảng (a;b). 2 CỰC TRỊ CỦA HÀM SỐ 19. + Dạng 1. Tìm cực trị của hàm số cho bởi biểu thức. + Dạng 2. Tìm cực trị của hàm số biết bảng biến thiên hoặc đồ thị. + Dạng 3. Tìm m để hàm số y = f (x) đạt cực trị tại điểm x0. + Dạng 4. Tìm m để hàm số có n cực trị. 3 GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT 36. 4 ĐƯỜNG TIỆM CẬN CỦA HÀM SỐ 42. + Dạng 1. Xác định các đường tiệm cận của hàm phân thức. + Dạng 2. Đọc phương trình đường tiệm cận đứng, ngang của đồ thị hàm số từ bảng biến thiên. 5 KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ HÀM SỐ 49. + Dạng 1. Khảo sát và vẽ đồ thị các hàm số thường gặp. + Dạng 2. Tiếp tuyến của đồ thị hàm số y = f(x) tại điểm M(x0; y0). + Dạng 3. Tiếp tuyến của đồ thị (C) biết hệ số góc của tiếp tuyến bằng k. + Dạng 4. Tiếp tuyến của đồ thị (C) biết tiếp tuyến song song với đường thẳng d: y = ax + b. + Dạng 5. Tiếp tuyến của đồ thị (C) biết tiếp tuyến vuông góc với đường thẳng d: y = ax + b. CHƯƠNG 2 HÀM SỐ LŨY THỪA. HÀM SỐ MŨ – HÀM SỐ LOGARIT 73. 1 LŨY THỪA 73. + Dạng 1. Rút gọn và tính giá trị biểu thức chứa lũy thừa. + Dạng 2. So sánh các biểu thức chứa lũy thừa. 2 HÀM SỐ LŨY THỪA 77. + Dạng 1. Tìm tập xác định của hàm số lũy thừa. + Dạng 2. Đạo hàm của hàm số lũy thừa. + Dạng 3. Tính chất, đồ thị của hàm số lũy thừa. 3 LOGARIT 83. + Dạng 1. Tính giá trị của biểu thức chứa logarit. + Dạng 2. Biểu diễn logarit theo các tham số. 4 HÀM SỐ MŨ – HÀM SỐ LOGARIT 88. + Dạng 1. Tập xác định của hàm số mũ và hàm số logarit. + Dạng 2. Các bài toán liên quan đến đạo hàm hàm số mũ và hàm số logarit. + Dạng 3. Max-min của hàm số mũ và hàm số logarit. + Dạng 4. Bài toán thực tế. 5 PHƯƠNG TRÌNH MŨ – PHƯƠNG TRÌNH LOGARIT 97. + Dạng 1. Đưa về phương trình mũ cơ bản. + Dạng 2. Đưa về cùng cơ số. + Dạng 3. Phương pháp lô-ga-rít hóa. + Dạng 4. Đặt một ẩn phụ. + Dạng 5. Đặt ẩn phụ với phương trình đẳng cấp. + Dạng 6. Đặt ẩn phu khi tích hai cơ số bằng 1. + Dạng 7. Phương trình logarit cơ bản. + Dạng 8. Phương pháp đưa về cùng cơ số. + Dạng 9. Đặt một ẩn phụ. 6 BẤT PHƯƠNG TRÌNH MŨ – BẤT PHƯƠNG TRÌNH LOGARIT 106. + Dạng 1. Bất phương trình mũ cơ bản. + Dạng 2. Phương pháp đưa về cùng cơ số. + Dạng 3. Bất phương trình mũ bằng phương pháp đặt ẩn phụ. + Dạng 4. Phân tích thành nhân tử. + Dạng 5. Giải bất phương trình logagit dạng cơ bản. + Dạng 6. Giải bất phương trình logagit bằng cách đưa về cùng cơ số. + Dạng 7. Phương pháp đặt ẩn phụ trong bất phương trình logarit. CHƯƠNG 3 NGUYÊN HÀM – TÍCH PHÂN – ỨNG DỤNG 115. 1 NGUYÊN HÀM 115. + Dạng 1. Tính nguyên hàm bằng bảng nguyên hàm. + Dạng 2. Tìm nguyên hàm bằng phương pháp đổi biến số. + Dạng 3. Nguyên hàm từng phần. 2 TÍCH PHÂN 129. + Dạng 1. Tích phân cơ bản và tính chất tính phân. + Dạng 2. Tích phân hàm số phân thức hữu tỉ. + Dạng 3. Tính chất của tích phân. + Dạng 4. Tích phân sử dụng phương pháp đổi biến. + Dạng 5. Tích phân sử dụng phương pháp đổi biến. + Dạng 6. Đổi biến biểu thức chứa ln, ex hoặc lượng giác trong dấu căn. + Dạng 7. Đổi biến biểu thức chứa hàm ln không nằm trong căn. + Dạng 8. Tính Zba f(sinx)cosxdx hoặc I = Zba f(cosx)sinxdx. + Dạng 9. Tính I = Zba f(tanx)1cos2xdx hoặc I = Zba f(cotx)1sin2xdx. + Dạng 10. Phương pháp từng phần. 3 ỨNG DỤNG TÍCH PHÂN 144. CHƯƠNG 4 SỐ PHỨC 155. 1 SỐ PHỨC – CÁC PHÉP TOÁN TRÊN SỐ PHỨC 155. 2 PHƯƠNG TRÌNH BẬC HAI HỆ SỐ THỰC 164. PHẦN II HÌNH HỌC 169. CHƯƠNG 1 KHỐI ĐA DIỆN 171. 1 KHÁI NIỆM VỀ HÌNH ĐA DIỆN VÀ KHỐI ĐA DIỆN 171. 2 KHỐI ĐA DIỆN LỒI, KHỐI ĐA DIỆN ĐỀU 175. 3 THỂ TÍCH KHỐI ĐA DIỆN 180. CHƯƠNG 2 MẶT NÓN – MẶT TRỤ – MẶT CẦU 199. 1 KHÁI NIỆM VỀ MẶT TRÒN XOAY 199. 2 MẶT CẦU 207. CHƯƠNG 3 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 215. 1 HỆ TỌA ĐỘ TRONG KHÔNG GIAN 215. 2 PHƯƠNG TRÌNH MẶT PHẲNG 228. + Dạng 1. Viết phương trình mặt phẳng trung trực của đoạn thẳng AB cho trước. + Dạng 2. Viết phương trình mặt phẳng đi qua một điểm và có cặp véc-tơ chỉ phương cho trước. + Dạng 3. Viết phương trình mặt phẳng (P) đi qua M và vuông góc với đường thẳng d đi qua hai điểm A và B. + Dạng 4. Viết phương trình mặt phẳng (P) đi qua A, B và vuông góc với mặt phẳng (Q). + Dạng 5. Viết phương trình mặt phẳng (P) đi qua điểm M và chứa đường thẳng ∆. + Dạng 6. Viết phương trình mặt phẳng (P) chứa hai đường thẳng song song ∆1 và ∆2. + Dạng 7. Viết phương trình mặt phẳng (P) chứa hai đường thẳng cắt nhau ∆1 và ∆2. + Dạng 8. Viết phương trình mặt phẳng (P) chứa đường thẳng ∆1 và song song với đường thẳng ∆2 với ∆1 và ∆2 chéo nhau. + Dạng 9. Viết phương trình mặt phẳng (P) đi qua M, đồng thời vuông góc với hai mặt phẳng (α) và (β). 3 PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KHÔNG GIAN 240. + Dạng 1. Tìm vec-tơ chỉ phương, điểm thuộc đường thẳng. + Dạng 2. Đường thẳng đi qua một điểm và véc-tơ chỉ phương cho trước. + Dạng 3. Đường thẳng d đi qua điểm M và song song với hai mặt phẳng cắt nhau (P) và (Q). + Dạng 4. Viết phương trình đường thẳng giao tuyến của hai mặt phẳng. + Dạng 5. Viết phương trình đường thẳng đi qua điểm M và vuông góc với hai đường thẳng cho trước. + Dạng 6. Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d1. + Dạng 7. Viết phương trình đường thẳng đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2. + Dạng 8. Viết phương trình đường thẳng đi qua điểm A đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 9. Viết phương trình đường thẳng d nằm trong mặt phẳng (P) đồng thời cắt cả hai đường thẳng d1 và d2.

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm khối đa diện, mặt nón, mặt trụ và mặt cầu - Trần Đình Cư
Tài liệu tóm tắt lý thuyết, phân dạng, phương pháp giải và bài tập trắc nghiệm các dạng toán về khối đa diện, mặt nón, mặt trụ và mặt cầu. Chương 1. Khối đa diện Bài 1. Khái niệm về khối đa diện Bài 2. Khối đa diện lồi và khối đa diện đều Bài 3. Khái niệm về thể tích khối đa diện Vấn đề 1. Thể tích khối chóp + Dạng 1. Khối chóp có cạnh bên vuông góc đáy + Dạng 2. Khối chóp có hình chiếu của đỉnh lên mặt phẳng đáy + Dạng 3. Khối chóp có mặt bên vuông góc với đáy + Dạng 4. Khối chóp đều + Dạng 5. Tỉ lệ thể tích [ads] Vấn đề 2. Thể tích khối lăng trụ + Dạng 1. Khối lăng trụ đứng + Dạng 2. Khối lăng trụ đều + Dạng 3. Khối lăng trụ xiên Chương 2. Mặt nón, mặt trụ và mặt cầu Bài 1. Khái niệm về mặt tròn xoay Vấn đề 1. Mặt nón, hình nón và khối nón Vấn đề 2. Mặt trụ – hình trụ và khối trụ Bài 2. Mặt cầu + Dạng 1. Hình chóp có các đỉnh nhìn hai đỉnh còn lại dưới 1 góc vuông + Dạng 2. Hình chóp có các cạnh bên bằng nhau + Dạng 3. Mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy + Dạng 4. Mặt cầu ngoại tiếp hình chóp có mặt bên vuông góc với mặt đáy
209 bài tập trắc nghiệm khối tròn xoay có đáp án - Lê Hoài Sơn
Tài liệu gồm 17 trang tuyển tập 209 bài tập trắc nghiệm khối tròn xoay có đáp án, tài liệu được biên soạn bởi thầy Lê Hoài Sơn. Trích dẫn tài liệu : + Cho ba điểm phân biệt A, B, C cùng nằm trên một mặt cầu, biết rằng góc ACB = 90 độ. Trong các khẳng định sau, khẳng định nào đúng ? A. Luôn có một đường tròn nằm trên mặt cầu ngoại tiếp tam giác ABC B. Tam giác ABC vuông cân tại C C. Mặt phẳng (ABC) cắt mặt cầu theo giao tuyến là một đường tròn lớn D. AB là một đường kính của mặt cầu [ads] + Trong các mệnh đề sau đây, mệnh đề nào sai? A. Bất kì một hình tứ diện nào cũng có mặt cầu ngoại tiếp B. Bất kì một hình hộp chữ nhật nào cũng có một mặt cầu ngoại tiếp C. Bất kì một hình hộp nào cũng có một mặt cầu ngoại tiếp D. Bất kì một hình chóp đều nào cũng có một mặt cầu ngoại tiếp + Diện tích xung quanh của hình trụ bằng bao nhiêu? A. Hai lần tích của chu vi đáy với độ dài đường cao của nó B. Một nửa tích của chu vi đáy với độ dài đường sinh của nó C. Tích của chu vi đáy với độ dài đường sinh của nó D. Một nửa tích của chu vi đáy với độ dài đường cao của nó
Bài tập trắc nghiệm hình học không gian - Lê Viết Nhơn
Tài liệu gồm 68 trang tuyển tập các bài toán trắc nghiệm chuyên đề hình học không gian. Nội dung tài liệu gồm 2 chương: Chương I. Khối đa diện – thể tích khối đa diện Bài 1. Góc_khoảng cách Bài 2. Khối đa diện Bài 3. Thể tích Bài tập trắc nghiệm Phần 1. Khối đa diện Phần 2. Thể tích Phần 3. Tỷ số thể tích Phần 4. Góc – khoảng cách Phần 5. Mặt cầu ngoại tiếp khối đa diện Chương II. Mặt nón – mặt trụ – mặt cầu Phần 6. Mặt nón Phần 7. Mặt trụ Phần 8. Mặt cầu [ads] Trích dẫn tài liệu : + Từ một mảnh giấy hình vuông cạnh là 4cm, người ta gấp nó thành bốn phần đều nhau rồi dựng lên thành bốn mặt xung quanh của hình hình lăng trụ tứ giác đều như hình vẽ. Hỏi thể tích của khối lăng trụ này là bao nhiêu. + Khối lăng trụ ABC.A’B’C’ có đáy là một tam giác đều cạnh a, góc giữa cạnh bên và mặt phẳng đáy bằng 30 độ. Hình chiếu của đỉnh A’ trên mặt phẳng đáy (ABC) trùng với trung điểm của cạnh BC. Tính thể tích của khối lăng trụ đã cho. + Người ta cắt miếng bìa hình tam giác cạnh bằng 10cm như hình bên và gấp theo các đường kẻ, sau đó dán các mép lại để được hình tứ diện đều. Tính thể tích của khối tứ diện tạo thành.
Bài tập trắc nghiệm mặt cầu - hình cầu - khối cầu - Nguyễn Văn Huy
Tài liệu gồm 10 trang với 44 bài toán trắc nghiệm về mặt cầu – hình cầu và khối cầu, các bài toán có đáp án và lời giải chi tiết. Trích dẫn tài liệu : + Cho mặt cầu (S) có tâm I bán kính R = 5 và mặt phẳng (P) cắt (S) theo một đường tròn (C) có bán kính r = 3. Kết luận nào sau đây là sai? A. Tâm của (C) là hình chiếu vuông góc của I trên (P) B. (C) là giao tuyến của (S) và (P) C. Khoảng cách từ I đến (P) bằng 4 D. (C) là đường tròn giao tuyến lớn nhất của (P) và (S) [ads] + Trong các khẳng định sau, khẳng định nào sai? A. Mặt phẳng (P) tiếp xúc với mặt cầu (S) tâm O tại điểm H thì OH là khoảng cách ngắn nhất từ O đến một điểm bất kỳ nằm trong mặt phẳng (P) B. Chỉ có duy nhất hai mặt phẳng vuông góc với mặt phẳng cho trước và tiếp xúc với mặt cầu (S) C. Mặt phẳng cắt mặt cầu (S) theo đường tròn (C), tâm của đường tròn (C) là hình chiếu của tâm mặt cầu (S) xuống mặt phẳng (P) D. Tại điểm H nằm trên mặt cầu chỉ có 1 tiếp tuyến duy nhất + Trong các mệnh đề sau đây, mệnh đề nào sai? A. Bất kì một hình tứ diện nào cũng có mặt cầu ngoại tiếp B. Bất kì một hình hộp chữ nhật nào cũng có một mặt cầu ngoại tiếp C. Bất kì một hình hộp nào cũng có một mặt cầu ngoại tiếp D. Bất kì một hình chóp đều nào cũng có một mặt cầu ngoại tiếp