Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng B)

chia sẻ đến các bạn nội dung đề thi và lời giải đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng B), kỳ thi được diễn ra vào ngày 04 tháng 12 năm 2018, đề gồm 1 trang với 06 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang tính điểm. Trích dẫn đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng B) : + Một hộ gia đình cần xây dựng một bể chứa nước, dạng hình hộp chữ nhật có thể tích 24 (m3).Tỉ số giữa chiều cao của bể và chiều rộng của bể bằng 4. Biết rằng bể chỉ có các mặt bên và mặt đáy (không có mặt trên). Chiều dài của đáy bể bằng bao nhiêu để xây bể tốn ít nguyên vật liệu nhất. + Có hai chuồng nhốt thỏ, chuồng thứ nhất nhốt 19 con thỏ lông màu đen và 1 con thỏ lông màu trắng. Chuồng thứ hai nhốt 13 con thỏ lông màu đen và 2 con thỏ lông màu trắng. Bắt ngẫu nhiên mỗi chuồng đúng một con thỏ. Tính xác suất để bắt được hai con thỏ có màu lông khác nhau. + Cho hàm số y = x^4 + 2(m + 1)x^2 + m^2 + m – 1, với m là tham số. Tìm các giá trị của m để đồ thị hàm số đã cho có ba điểm cực trị là 3 đỉnh của một tam giác đều. [ads] + Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD, AB = 2AD. Điểm N thuộc cạnh AB sao cho AN = 1/4.AB, M là trung điểm của DC. Gọi I là giao điểm của MN và BD. Viết phương trình đường tròn ngoại tiếp tam giác BIN. Biết điểm A(2;1), đường thẳng BD có phương trình 11x – 2y + 5 = 0, điểm B có hoành độ là số nguyên. + Cho tam giác ABC có cạnh BC = a, AB = c thỏa mãn √(2a – c).cosB/2 = √(2a + c).sinB/2, với 2a > c. Chứng minh rằng tam giác ABC là tam giác cân.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Thái Nguyên
Nội dung Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Thái Nguyên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi cấp tỉnh Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Thái Nguyên : + Cho hàm số 1 2 2 2024 2023 2022 1 2024 2023 2022 m m y x x x (m là tham số thực). Biện luận theo m số điểm cực trị của hàm số đã cho. + b. Cho phương trình 2 m x x x 2 2 2. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm thực phân biệt. + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. SA vuông góc với mặt phẳng (ABCD). AB BC a AD a 2 SA a 3. a. Tính thể tích khối chóp S.ABCD. b. Tính côsin của góc giữa hai mặt phẳng (SBC) và (SCD). c. Gọi M là điểm nằm trên cạnh SA sao cho SM x = (0 3 x a). Mặt phẳng (BCM ) chia hình chóp thành hai phần có thể tích là V1 và V2 (trong đó V1 là thể tích của phần chứa đỉnh S). Tìm x để V V 2 1 2.
Đề chọn học sinh giỏi Toán THPT cấp tỉnh năm 2022 2023 sở GD ĐT Gia Lai
Nội dung Đề chọn học sinh giỏi Toán THPT cấp tỉnh năm 2022 2023 sở GD ĐT Gia Lai Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán bậc Trung học Phổ thông cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Gia Lai; kỳ thi được diễn ra vào sáng thứ Ba ngày 08 tháng 11 năm 2022. Trích dẫn Đề chọn học sinh giỏi Toán THPT cấp tỉnh năm 2022 – 2023 sở GD&ĐT Gia Lai : + Tìm tất cả các bộ ba số nguyên dương (a;b;c) sao cho với mọi số nguyên dương n không có ước nguyên tố nhỏ hơn 2022 ta luôn có an + bn + n chia hết cho n + c. + Cho tam giác nhọn ABC nội tiếp đường tròn (O), P là một điểm thay đổi trên cung nhỏ AC của (O) và K là tâm đường tròn Euler của tam giác PBC. a) Chứng minh rằng, đường thẳng qua K vuông góc với PA luôn đi qua một điểm cố định khi P di chuyển. b) Gọi H là hình chiếu của K lên PA. Chứng minh rằng, đường trung trực của đoạn AH luôn đi qua một điểm cố định khi P di chuyển. + Cho tập hợp A = {1; 2; 3; …; 2022}. Đặt F = {X | X con A và S(X) chia hết cho 3} với S(X) là tổng các phần tử của X. a) Tìm số phần tử của tập F có chứa 2022. b) Hãy tính tổng S(X).
Đề học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2022 2023 sở GDKHCN Bạc Liêu
Nội dung Đề học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2022 2023 sở GDKHCN Bạc Liêu Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi lớp 12 cấp tỉnh kết hợp thi chọn đội tuyển dự thi học sinh giỏi Quốc gia năm học 2022 – 2023 môn Toán sở Giáo dục, Khoa học và Công Nghệ tỉnh Bạc Liêu; kỳ thi được diễn ra vào ngày 06 tháng 11 năm 2022. Trích dẫn Đề học sinh giỏi Toán lớp 12 cấp tỉnh năm 2022 – 2023 sở GDKHCN Bạc Liêu : + Cho hai đường tròn (O1), (O2) cắt nhau tại hai điểm A, B. XA, AY theo thứ tự là hai đường kính của hai đường tròn đó. I là một điểm thuộc phân giác trong XAY sao cho I không thuộc hai đường tròn và OI không vuông góc XY, O là trung điểm của XY. Đường thẳng qua A vuông góc AI cắt (O1), (O2) lần lượt tại E, F. IX cắt (O1) tại K, IY cắt (O2) tại L. a) Gọi C là giao của FE với XI. Chứng minh OE tiếp xúc với (CEK). b) Chứng minh EK, FL, OI đồng quy. + Gọi Q là tập tất cả các số tự nhiên gồm 7 chữ số đội một khác nhau. Từ tập Q, lấy ngẫu nhiên một số. Tính xác suất để lấy được số chia hết cho 15. + Tìm hình vuông có kích thước bé nhất, để trong hình vuông đó có thể sắp xếp năm hình tròn bán kính 1, sao cho không có hai hình tròn nào trong chúng có nhiều hơn một điểm chung.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Bến Tre
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Bến Tre Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bến Tre. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Bến Tre : + Gọi S là tập tất cả các số có 7 chữ số mà tổng các chữ số của nó bằng 59. Lấy ngẫu nhiên một số trong S. Tính xác suất để số được chọn chia hết cho 11. + Cho tứ giác ABCD nội tiếp đường tròn (O). E là giao điểm của AB và CD, F là giao điểm của AD và BC. Gọi M, N lần lượt là trung điểm của BD, AC. Chứng minh rằng: đường tròn (MNF) tiếp xúc với EF. + Cho số thực x, ký hiệu [x] là số nguyên lớn nhất không vượt quá x. Thực hiện các yêu cầu sau: a) Với p là số nguyên tố có dạng 4k + 1, k thuộc N*. Tính. b) Với p là số nguyên tố lẻ, q là số nguyên dương không chia hết cho p. Chứng minh rằng.