Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh lớp 10 chuyên năm 2019 - 2020 sở GDĐT Nam Định (Đề chung)

THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề Toán tuyển sinh vào lớp 10 trường THPT chuyên năm học 2019 – 2020 sở Giáo dục và Đào tạo tỉnh Nam Định, đề thi chung (đề 1) được được dành cho các thí sinh dự thi vào các lớp 10 khối chuyên Khoa học Tự nhiên. Đề Toán tuyển sinh lớp 10 THPT chuyên năm 2019 – 2020 sở GD&ĐT Nam Định gồm có 5 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi gồm có 01 trang, đề thi có lời giải chi tiết (lời giải được trình bày bởi thầy Nguyễn Mạnh Tuấn, giáo viên Toán trường THCS Cẩm Hoàng, Cẩm Giàng, Hải Dương). [ads] Trích dẫn đề Toán tuyển sinh lớp 10 THPT chuyên năm 2019 – 2020 sở GD&ĐT Nam Định : + Một hình trụ có diện tích hình tròn đáy là 9pi cm2, độ dài đường sinh là 6cm. Tính thể tích hình trụ đó. + Tìm tất cả các giá trị của tham số m để đường thẳng y = (m^2 – 1)x + 7 và đường thẳng y = 3x + m + 5 (với m khác ±1) là hai đường thẳng song song. + Cho tam giác ABC vuông tại A có AB = 6cm, BC = 10cm. Tính độ dài đường cao kẻ từ A xuống cạnh BC.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Sơn La; đề được biên soạn theo hình thức 20% trắc nghiệm + 80% tự luận (theo điểm số), phần trắc nghiệm gồm 10 câu, phần tự luận gồm 05 câu, thời gian làm bài 120 phút; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 14 tháng 06 năm 2021. Trích dẫn đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Sơn La : + Một trường THPT nhận được 650 hồ sơ đăng kí thi tuyển sinh vào lớp 10 với hai hình thức: đăng kí trực tuyến và đăng kí trực tiếp tại nhà trường. Số hồ sơ đăng kí trực tuyến nhiều hơn số hồ sơ đăng kí trực tiếp là 120 hồ sơ. Hỏi nhà trường đã nhận bao nhiêu hồ sơ đăng kí trực tuyến? + Cho tam giác ABC nhọn có đường cao AD và H là trực tâm tam giác. Vẽ đường tròn tâm I đường kính BC, từ A kẻ các tiếp tuyến AM AN với đường tròn I (M N là các tiếp điểm). a) Chứng minh tứ giác AMIN nội tiếp đường tròn. b) Chứng minh AMN ADN và AHN AND. c) Chứng minh ba điểm M H N thẳng hàng. + Cho parabol 2 P y x và hai điểm A(-3;9), B(2;4). Tìm điểm M có hoành độ thuộc khoảng (-3;2) trên (P) sao cho diện tích tam giác MAB lớn nhất.
Đề thi tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Phú Yên; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Phú Yên : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Quãng đường AB gồm một đoạn lên dốc dài 5km và một đoạn xuống dốc dài 10km. Một người đi xe đạp từ A đến B hết 1 giờ 10 phút và đi từ B về A hết 1 giờ 20 phút (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính vận tốc lúc lên dốc, lúc xuống dốc của người đi xe đạp. + Cho hình thang ABCD có A D 90 AD AB 4 CD AB 3. Gọi M là trung điểm của AD, E là hình chiếu vuông góc của M lên BC. Tia BM cắt đường thẳng CD tại F. a) Chứng minh rằng MAE MBE. b) Chứng minh rằng ABDF là hình bình hành. c) Đường thẳng qua M vuông góc với BF cắt cạnh BC tại N. Gọi H là hình chiếu vuông góc của N lên CD. Chứng minh rằng tam giác BNF cân. d) Chứng minh rằng đường thẳng MH đi qua trung điểm của DE. + Cho hàm số 2 y ax. a) Xác định hệ số a biết rằng đồ thị của hàm số cắt đường thẳng y x 2 tại điểm A có hoành độ bằng 1. b) Vẽ đồ thị của hàm số y x 2 và đồ thị hàm số 2 y ax với giá trị của a vừa tìm được ở câu a trên cùng một mặt phẳng tọa độ. c) Dựa vào đồ thị, hãy xác định tọa độ giao điểm thứ hai (khác A) của hai đồ thị vừa vẽ trong câu b.
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Phú Thọ; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Phú Thọ : + Cho hệ phương trình 2 1 3 4 1 x y m x y m (m là tham số). a) Giải hệ phương trình với m 2. b) Tìm m để hệ phương trình có nghiệm duy nhất x y thỏa mãn 2 2 3 2 x y. + Cho đường tròn O đường kính AB. Trên tia đối của tia AB lấy điểm C (C không trùng với B). Kẻ tiếp tuyến CD với đường tròn O (D là tiếp điểm), tiếp tuyến tại A của đường tròn O cắt đường thẳng CD tại E. a) Chứng minh rằng tứ giác AODE nội tiếp. b) Gọi H là giao điểm của AD và OE, K là giao điểm của BE với đường tròn O (K không trùng với B). Chứng minh EHK KBA. c) Đường thẳng vuông góc với AB tại O cắt CE tại M. Chứng minh 1 EA MO EM MC. + Cho a, b, c là các số dương thỏa mãn 2 2 2 a b c 1. Tìm giá trị lớn nhất của biểu thức A a bc 1 2 1 2.
Đề thi tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Nam Định; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Nam Định : + Mảnh đất hình chữ nhật ABCD có chiều dài AB m 6, chiều rộng BC m 4. Người ta trồng hoa trên phần đất là nửa hình tròn đường kính AD và nửa đường tròn đường kính BC, phần còn lại của mảnh đất để trồng cỏ. Tính diện tích phần đất trồng cỏ (phần tô đậm trong hình vẽ bên, kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho O và điểm A nằm bên ngoài đường tròn. Từ A kẻ các tiếp tuyến AB AC với đường tròn O (B C là các tiếp điểm). Kẻ đường kính BD của đường tròn O. a) Chứng minh ABOC là tứ giác nội tiếp đường tròn và BDC AOC. b) Kẻ CK vuông góc với BD tại K. Gọi I là giao điểm của AD và CK. Chứng minh rằng I là trung điểm của CK. +  Tìm tọa độ của tất cả các điểm thuộc parabol 2 y x 2 có tung độ bằng -8.