Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 8 môn Toán cấp huyện năm 2015 2016 phòng GD ĐT Củ Chi TP HCM

Nội dung Đề thi học sinh giỏi lớp 8 môn Toán cấp huyện năm 2015 2016 phòng GD ĐT Củ Chi TP HCM Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 cấp huyện năm 2015 – 2016 phòng GD&ĐT Củ Chi – TP HCM Đề thi học sinh giỏi Toán lớp 8 cấp huyện năm 2015 – 2016 phòng GD&ĐT Củ Chi – TP HCM Sytu muốn gửi đến quý thầy cô và các em học sinh lớp 8 đề thi học sinh giỏi Toán lớp 8 cấp huyện năm 2015 – 2016 do phòng GD&ĐT Củ Chi – TP HCM tổ chức. Kỳ thi diễn ra vào ngày 04 tháng 04 năm 2016, đề thi bao gồm lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán lớp 8 cấp huyện năm 2015 – 2016 phòng GD&ĐT Củ Chi – TP HCM: + Trong tam giác nhọn ABC, các đường cao AA’, BB’, CC’, H là trực tâm. Câu hỏi đặt ra là tính tổng các đường cao. Bài toán sau đó yêu cầu chứng minh một phép toán liên quan đến phân giác của tam giác. + Đề thi còn đề cập đến việc tìm giá trị của biểu thức A dựa trên một số điều kiện cụ thể như xác định, giá trị bằng 0, hay giá trị nguyên. Học sinh cần phân tích đa thức thành nhân tử để giải quyết câu hỏi đó. Với nội dung đề thi đa dạng và phong phú như vậy, học sinh sẽ được thử thách và khám phá nhiều kỹ năng Toán học khác nhau, từ tính tổng đến phân tích đa thức. Hy vọng rằng đề thi này sẽ giúp học sinh rèn luyện và nâng cao kiến thức của mình trong môn Toán.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Nam Trực Nam Định
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Nam Trực Nam Định Bản PDF - Nội dung bài viết Sytu giới thiệu đề học sinh giỏi Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Nam Trực - Nam Định Sytu giới thiệu đề học sinh giỏi Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Nam Trực - Nam Định Sytu rất hân hạnh được giới thiệu đến quý thầy cô và các em học sinh đề học sinh giỏi Toán lớp 8 năm 2021 - 2022 của phòng GD&ĐT Nam Trực - Nam Định. Đề thi này được chúng tôi xem xét kỹ lưỡng và lựa chọn các câu hỏi phù hợp để thử thách và phát triển năng lực Toán học của các em học sinh. Chúng tôi tin rằng đề thi này sẽ giúp các em rèn luyện kỹ năng giải quyết bài toán, logic suy luận và tư duy sáng tạo.
Đề học sinh giỏi lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Cao Lộc Lạng Sơn
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Cao Lộc Lạng Sơn Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm 2020-2021 phòng GD&ĐT Cao Lộc - Lạng Sơn Đề thi học sinh giỏi Toán lớp 8 năm 2020-2021 phòng GD&ĐT Cao Lộc - Lạng Sơn Đề thi học sinh giỏi môn Toán lớp 8 năm 2020-2021 của phòng GD&ĐT Cao Lộc - Lạng Sơn bao gồm 01 trang với 04 bài toán dạng tự luận. Thời gian làm bài là 150 phút. Trích dẫn một số câu hỏi trong đề thi: Cho a và b là hai số tự nhiên. Biết rằng a chia cho 5 dư 3 và b chia cho 5 dư 2. Hỏi tích ab chia cho 5 dư bao nhiêu? Giải phương trình. Cho tam giác ABC vuông tại A (AC > AB), đường cao AH (H BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E. a) Chứng minh rằng hai tam giác BEC và ADC đồng dạng. Tính độ dài đoạn BE theo m = AB. b) Gọi M là trung điểm của đoạn BE. Chứng minh rằng hai tam giác BHM và BEC đồng dạng. Tính số đo của góc AHM. c) Tia AM cắt BC tại G. Chứng minh: BC AH HC. Đề thi đa dạng, đòi hỏi sự logic, khéo léo và kiến thức sâu rộng trong môn Toán. Học sinh cần phải chuẩn bị kỹ càng và thực hành nhiều để đạt kết quả tốt trong kỳ thi học sinh giỏi.
Đề chọn học sinh giỏi lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Bắc Ninh
Nội dung Đề chọn học sinh giỏi lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh Đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh Ngày 11 tháng 01 năm 2021, phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh đã tổ chức kì thi chọn học sinh giỏi (HSG) cấp thành phố môn Toán lớp 8 năm học 2020 - 2021. Đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh bao gồm 1 trang với 5 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút. Trích dẫn đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh: Tìm dư trong phép chia đa thức f(x) cho x + 1 và x^2 + 1. Tìm các số nguyên x, y thỏa mãn phương trình 5x + 53 = 2xy + 8y^2. Chứng minh một số tính chất của hình vuông ABCD và tam giác BKC. Trên đây là phần đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh. Các bài toán yêu cầu sự tư duy logic, khả năng giải quyết vấn đề và kiến thức sâu rộng về môn Toán. Hãy thử sức và nỗ lực để vượt qua thách thức này!
Đề giao lưu HSG lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Chí Linh Hải Dương
Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Chí Linh Hải Dương Bản PDF - Nội dung bài viết Đề giao lưu HSG Toán lớp 8 năm 2018 2019 phòng GD ĐT Chí Linh Hải Dương Đề giao lưu HSG Toán lớp 8 năm 2018 2019 phòng GD ĐT Chí Linh Hải Dương Đề giao lưu HSG Toán lớp 8 năm 2018 – 2019 phòng GD&ĐT Chí Linh – Hải Dương được biên soạn theo hình thức tự luận với 05 bài toán, học sinh có 150 phút để làm bài thi. Kỳ thi nhằm giao lưu đội tuyển học sinh giỏi Toán lớp 8 của các trường THCS trên địa bàn thành phố Chí Linh, tỉnh Hải Dương. Trích dẫn đề giao lưu HSG Toán lớp 8 năm 2018 – 2019 phòng GD&ĐT Chí Linh – Hải Dương: + Chứng minh rằng không tồn tại số nguyên n thỏa mãn: (2014^2014 + 1) chia hết cho n^3 + 2012n. + Cho hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD). a) Chứng minh tam giác AMN vuông cân. b) Chứng minh rằng: AN^2 = NC.NP. c) Gọi Q là giao điểm của tia AM và tia DC. Chứng minh tổng 1/AM^2 + 1/AQ^2 không đổi khi điểm M thay đổi trên cạnh BC. + Cho các số x, y không âm thay đổi và thỏa mãn x + y = 1. Tìm giá trị lớn nhất của biểu thức: Q = (4x^2 + 3y)(4y^2 + 3x) + 25xy.