Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG Toán 9 lần 1 năm 2023 - 2024 phòng GDĐT Bình Xuyên - Vĩnh Phúc

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 9 lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Bình Xuyên, tỉnh Vĩnh Phúc; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 9 lần 1 năm 2023 – 2024 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc : + Cho hình thang ABCD vuông ở đỉnh A và đỉnh B thỏa mãn AD AB BC 2 2. Gọi H chân đường vuông góc kẻ từ A đến BD. a) Chứng minh BHC BCD và tính độ dài CH khi độ dài AB = 4cm. b) Gọi M là trung điểm của HD. Đường thẳng AM và BC cắt nhau tại điểm E. Chứng minh EC EB EM EA. + Cho hình vuông ABCD. Trên cạnh AB, AD lần lượt lấy các điểm M, N thỏa mãn AM DN. Kẻ CH vuông góc MN (H thuộc MN), đường thẳng qua M vuông góc với AB cắt CH tại P. Chứng minh ba điểm DBP thẳng hàng. + Khi kí hợp đồng làm việc thời hạn 5 năm với người lao động được tuyển dụng mới, một công ty đưa ra ba phương án trả lương như sau: Phương án 1: Năm thứ nhất, tiền lương là 120 triệu đồng, kể từ năm thứ hai trở đi, mỗi năm tiền lương tăng thêm 22 triệu so với năm trước. Phương án 2: Quý thứ nhất, tiền lương là 30 triệu đồng, kể từ quý thứ hai trở đi, mỗi quý tăng 1,5 triệu đồng so với quí trước (mỗi quí được tính bừng 3 tháng). Phương án 3: Tháng thứ nhất, tiền lương là 6 triệu đồng, kể từ tháng thứ 2 trở đi, mỗi tháng tăng 300 nghìn đồng so với tháng trước. Nếu là người lao động được tuyển dụng, em sẽ chọn phương án nào để khi kết thúc hợp đồng, tổng số tiền lương thu được là nhiều nhất?

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Dương; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Bình Dương : + Cho A là tập hợp gồm 6 sản phẩm bất kì của tập hợp X x 0 14. Chứng minh rằng tồn tại hai tập con 1 2 B B của tập hợp A (1 2 B B khác nhau và khác rỗng) sao cho tổng các phần tử của tập B1 bằng tổng các phẩn tử của tập B2. + Cho hình thang ABCD AB CD AB CD. Gọi E là giao điểm của AD và BC, F là giao điểm của AC và BD. Chứng minh rằng đường thẳng EF đi qua trung điểm của hai đáy AB, CD. + Cho tam giác nhọn ABC D E F lần lượt là các điểm trên các cạnh BC, CA, AB. Nối AD, BE, CF. AD cắt CF và BE lần lượt tại G và I, CF cắt BE tại H. Chứng minh rằng nếu diện tích của bốn tam giác AFG, IHG, BID, CEH bằng nhau thì các diện tích của ba tứ giác AGHE, BIGF, CHID cũng bằng nhau.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào thứ Năm ngày 23 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Trên mặt phẳng toạ độ Oxy, cho điểm A thuộc parabol (P): y = -x2 có tung độ yA = –4. Tìm tọa độ các điểm B thuộc (P) sao cho tam giác OAB vuông tại B. + Cho điểm M nằm ngoài đường tròn (O). Từ M vẽ hai tiếp tuyến MA, MC của đường tròn (O) (A, C là các tiếp điểm). Vẽ cát tuyến MBD của (O) sao cho B nằm giữa M và D, BC < BD. 1) Chứng minh 2) Trên đoạn BD lấy điểm F sao cho FAD = BAC. Chứng minh hai tam giác ABF, ACD đồng dạng và AD.BC + AB.CD = AC.BD. 3) Tiếp tuyến tại B của đường tròn (O) cắt MC tại N và cắt đường thẳng CD tại P; ND cắt đường tròn (O) tại E. Chứng minh A, E, P thẳng hàng. + Cho điểm A nằm ngoài đường tròn (O). Từ điểm A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ cát tuyến AED (E nằm giữa A và D) không đi qua O cắt BC ở F. Hai tia CE và DB cắt nhau ở G, trên tia đối của tia BC lấy điểm H sao cho tứ giác CDHG nội tiếp đường tròn.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT An Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT An Giang : + Một số nguyên có ba chữ số có tính chất: nếu ta bỏ chữ số đầu tiên của số đó ta được một số chính phương, nếu ta bỏ đi chữ số cuối cùng ta vẫn được một số chính phương. Tìm tất cả các số có ba chữ số có tính chất như vậy. + Cho đường tròn (O) tâm O đường kính AB. Kéo dài AB về phía B lấy một điểm S tùy ý, kẻ cát tuyến SMC với đường tròn (O). Từ C vẽ dây CD vuông góc với AB; AM và BC cắt nhau tại N, AB và DM cắt nhau tại P. a) Chứng minh rằng NP song song CD. b) Chứng tỏ rằng OP.OS = OA2. + Một quyển sách có 30 bài học, mỗi bài học đều được bắt đầu ở một trang mới, các bài học có độ dài là 1, 2, 3, …, 30 trang (không nhất thiết sắp theo thứ tự). Hỏi số lượng bài học lớn nhất bắt đầu từ trang đánh số lẻ của quyển sách là bao nhiêu?
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Thuận; kỳ thi được diễn ra vào thứ Ba ngày 11 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Ninh Thuận : + Tìm số tự nhiên nhỏ nhất thỏa cả hai tính chất sau: a) Chữ số cuối cùng bằng 6. b) Nếu bỏ chữ số cuối cùng ấy và thêm chữ số 6 vào trước các chữ số còn lại thì số mới nhận được gấp 4 lần số ban đầu. + Chứng minh rằng: a2 + b2 + c2 > ab + bc + ac với mọi a, b, c. + Cho tam giác ABC đều cạnh a với đường cao AH. M là một điểm bất kỳ trên cạnh BC. Vẽ ME vuông góc AB, MF vuông góc AC. Gọi O là trung điểm của AM. 1) Chứng minh rằng 5 điểm A, E, H, M, F cùng nằm trên một đường tròn. Tứ giác OEHF là hình gì? 2) Tìm giá trị nhỏ nhất của diện tích tứ giác OEHF theo a khi M di động trên cạnh BC.