Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2020 - 2021 trường THCS Tân Mai - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng Toán 9 năm học 2020 – 2021 trường THCS Tân Mai – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Bảy ngày 22 tháng 05 năm 2021. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2020 – 2021 trường THCS Tân Mai – Hà Nội : + Chiếc mũ sinh nhật là một hình nón được làm từ bìa cứng có đường kính đáy là 40cm, độ dài đường sinh là 30cm. Hãy tính diện tích phần bìa cứng để làm một chiếc mũ nói trên (bỏ qua mép gấp và cho π ≈ 3,14). + Trong mặt phẳng tọa độ Oxy cho parabol (P): 2 y x và đường thẳng (d): y mx m 1. a) Tìm tọa độ giao điểm của đường thẳng (d) và parabol (P) khi m = 4. b) Tìm giá trị của m để đường thẳng (d) và parabol (P) cắt nhau tại hai điểm phân biệt có hoành độ 1 2 x x là độ dài hai cạnh góc vuông của một tam giác vuông có độ dài đường cao ứng với cạnh huyền bằng 1 5. + Cho ∆ABC nhọn (AB > AC) nội tiếp đường tròn (O), kẻ đường cao AH của ∆ABC và đường kính AD của (O). Gọi M là hình chiếu vuông góc của B trên đường thẳng AD. 1) Chứng minh bốn điểm A, H, M, B cùng thuộc một đường tròn. 2) Tiếp tuyến tại D của đường tròn (O) cắt hai tia AB và AC lần lượt tại E và F. Chứng minh AB.AE = AC.AF. 3) Gọi I là trung điểm của BC, đường thẳng qua I song song với với CD cắt BM tại K, tia DK cắt đường tròn (O) tại điểm thứ hai là S. Hai đường thẳng BC và EF cắt nhau tại Q. Chứng minh tứ giác SBKI nội tiếp và SQ là tiếp tuyến của (O).

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 lần 6 năm 2022 - 2023 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 lần 6 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thị xã Kinh Môn, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 lần 6 năm 2022 – 2023 phòng GD&ĐT Kinh Môn – Hải Dương : + Hai tỉnh A và B cách nhau 90km. Lúc 6 giờ 30 phút sáng, một xe tải đi từ tỉnh A đến tỉnh B. Đến 7 giờ 15 phút sáng cùng ngày, một xe con cũng đi từ tỉnh A đến tỉnh B đuổi theo xe tải với vận tốc lớn hơn vận tốc xe tải 20km/h. Hai xe gặp nhau tại tỉnh B. Tính vận tốc của xe tải. + Trong mặt phẳng toạ độ Oxy cho đường thẳng (d): y xm 4 2 và Parabol (P) 2 y x. Tìm số nguyên m để đường thẳng (d) cắt parbol (P) tại hai điểm phân biệt có tọa độ A(x1, y1) và B(x2, y2) sao cho 1 12 2 y xx 2 21. + Cho đường tròn (O; R) và điểm M nằm ngoài đường tròn. Vẽ các tiếp tuyến MA, MB với đường tròn(A, B là các tiếp điểm) và cát tuyến MCD không qua tâm O (điểm C nằm giữa M và D, tia MC nằm giữa 2 tia MA và MO). Gọi I là trung điểm của CD. a) Chứng minh tứ giác AMBI nội tiếp một đường tròn. b) Đường thẳng qua C vuông góc với OA cắt AB, AD lần lượt ở N và K. Chứng minh tứ giác BCNI nội tiếp và N là trung điểm của CK. c) Gọi Q là giao điểm của AB và MD. Chứng minh QC.MD = QD.MC.
Đề khảo sát Toán 9 lần 2 năm 2022 - 2023 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 2 năm học 2022 – 2023 trường THCS Nguyễn Trường Tộ, quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 18 tháng 05 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 lần 2 năm 2022 – 2023 trường THCS Nguyễn Trường Tộ – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. Một ca nô đi từ bến A đến bến B rồi trở về A ngay. Hai bến sông cách nhau 40km và tổng thời gian cả đi và về của ca nô là 3 giờ 20 phút. Tính vận tốc riêng của ca nô biết vận tốc dòng nước là 5km/h. + Một cốc nước hình trụ có đường kính đáy là 10cm đang chứa nước nhưng chưa đầy. Người ta thả vào cốc 6 viên bi hình cầu giống hệt nhau thì thấy mực nước trong cốc dâng lên 5cm (và nước vẫn chưa đầy cốc). Tính bán kính của mỗi viên bi. + Cho đường tròn O có hai đường kính AB và CD vuông góc với nhau. Lấy điểm M thuộc đoạn thẳng AC (M khác AC). Đường thẳng qua điểm O vuông góc với đường thẳng OM cắt đường thẳng BC tại điểm N. Tia AN cắt tia DB tại điểm E. Gọi F là chân đường vuông góc của B đến đường thẳng CE. 1) Chứng minh tứ giác MONC là tứ giác nội tiếp. 2) Chứng minh CO CD CF CE và AC là tiếp tuyến của đường tròn ngoại tiếp tam giác AFE. 3) Khi điểm M thay đổi vị trí trên đoạn thẳng AC, chứng minh đường thẳng NF luôn đi qua một điểm cố định.
Đề khảo sát Toán 9 năm 2022 - 2023 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thành phố Chí Linh, tỉnh Hải Dương; kỳ thi được diễn ra vào tháng 05 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 phòng GD&ĐT Chí Linh – Hải Dương : + Một ô tô đi từ A đến B với vận tốc và thời gian dự định trước. Nếu ô tô đi với vận tốc 60 km/h thì đến B sớm hơn dự định 20 phút. Nếu ô tô đi với vận tốc 40 km/h thì đến B muộn hơn dự định 30 phút. Tính quãng đường AB và thời gian dự định đi. + Cho phương trình: x2 – 3x – m – 2 = 0. Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn: 3×1 + x22 = 14. + Cho tam giác ABC có ba góc nhọn, AB < AC và nội tiếp đường tròn (O). Ba đường cao AD, BE, CF cắt nhau tại H. Tia AD cắt đường tròn (O) ở K (với K khác A). Tiếp tuyến tại C của đường tròn (O) cắt đường thẳng FD tại M. 1) Chứng minh tứ giác ACDF nội tiếp. 2) AM cắt đường tròn (O) tại I (với I khác A). Chứng minh MC2 = MI. MA và tam giác CMD cân. 3) MD cắt BI tại N. Chứng minh ba điểm C, K, N thẳng hàng.
Đề khảo sát Toán 9 lần 5 năm 2022 - 2023 phòng GDĐT Cẩm Giàng - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 5 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Cẩm Giàng, tỉnh Hải Dương; đề thi hình thức tự luận, gồm 01 trang với 05 bài toán, thời gian làm bài 120 phút; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 lần 5 năm 2022 – 2023 phòng GD&ĐT Cẩm Giàng – Hải Dương : + Hai bến sông A và B cách nhau 60 km. Lúc 8 giờ sáng một canô xuôi dòng từ bến A đến bến B. Tại B canô nghỉ 2 giờ rồi ngược dòng từ B trở về A. Canô trở về đến bến A lúc 19 giờ cùng ngày. Tính vận tốc của canô khi nước yên lặng, biết vận tốc của dòng nước là 5 km/h. + Cho phương trình: x2 – (2m – 3)x + m2 – 3m = 0 (m là tham số). Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn 0 < x1 < x2 < 5. + Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA và MB với đường tròn (A, B là các tiếp điểm). Lấy điểm C thuộc cung nhỏ AB sao cho cung CA nhỏ hơn cung CB, MC cắt đường tròn tại điểm thứ hai là D. Gọi H là trung điểm của CD. a) Chứng minh tứ giác MAHO nội tiếp; b) Gọi K là giao điểm của AB và CD, chứng minh MH.MK = MC.MD; c) Đường thẳng qua C song song với MB cắt AB tại E, DE cắt MB tại F, chứng minh F là trung điểm của BM.