Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THPT năm 2023 - 2024 sở GDĐT Bến Tre

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bến Tre; kỳ thi được diễn ra vào ngày 29 tháng 02 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2023 – 2024 sở GD&ĐT Bến Tre : + Có 16 quả cầu đôi một khác nhau, trong đó có 5 quả cầu màu vàng, 5 quả cầu màu xanh, 6 quả cầu màu đỏ. Có bao nhiêu cách chọn ra 10 quả cầu sao cho trong các quả cầu còn lại có đủ cả 3 màu. + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 2a, AD = CD = a, SA vuông góc (ABCD). Góc giữa mặt phẳng (SBC) và mặt đáy (ABCD) là 60°. Mặt phẳng (P) đi qua CD và trọng tâm G của tam giác SAB, (P) cắt các cạnh SA, SB lần lượt tại M, N. Tính thể tích khối chóp S.CDMN theo a. + Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc với nhau tại S. Đặt SA = a, SB = b, SC = c. Chứng minh: a2tanBAC = b2tanABC = c2tanACB.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Hưng Yên
Nội dung Đề thi chọn HSG Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Hưng Yên Bản PDF Đề thi chọn HSG Toán THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Hưng Yên gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, không kể thời gian phát đề, nội dung đề bao gồm kiến thức Toán lớp 10, 11 và 12, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh : + Cho hình lăng trụ tam giác đều ABC.A’B’C′ có độ dài cạnh đáy bằng 2a, góc giữa mặt phẳng (A’BC) và mặt phẳng đáy bằng 60 độ. Gọi M, N lần lượt là trung điểm của các cạnh BC và CC′. Tính khoảng cách giữa hai đường thẳng A’M và AN theo a. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a. Mặt bên (SAB) là tam giác cân tại S và vuông góc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng (SAC) bằng a√6/3. Tính thể tích khối chóp S.ABCD theo a. + Cho hàm số y = x^3 – 3x^2 + (m + 1)x – 4, m là tham số. Tìm các giá trị của m để đồ thị hàm số có 2 điểm cực trị và khoảng cách từ điểm A(7/2;1) đến đường thẳng đi qua hai điểm cực trị đó lớn nhất.
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2017 2018 sở GD ĐT Lai Châu
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2017 2018 sở GD ĐT Lai Châu Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán lớp 12 cấp tỉnh năm học 2017 – 2018 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Lai Châu : + Cho các số thực không âm abc thỏa mãn abc 1. Tìm giá trị lớn nhất của biểu thức P ab ac bc 3 5. + Có 20 người xếp thành một vòng tròn. Hỏi có bao nhiêu cách chọn ra 5 người sao cho không có hai người kề nhau được chọn. + Cho hình lăng trụ ABCD A B C D có đáy ABCD là hình thoi. Hình chiếu vuông góc của A’ lên (ABCD) là trọng tâm của tam giác ABD. Biết AB a 0 ABC 120 AA a. Tính thể tích khối lăng trụ ABCD A B C D theo a.
Đề thi chọn HSG lớp 12 môn Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Phú Thọ
Nội dung Đề thi chọn HSG lớp 12 môn Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Phú Thọ Bản PDF Đề thi chọn HSG Toán lớp 12 THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Phú Thọ gồm 6 trang, thời gian làm bài 180 phút, đề thi gồm 2 phần: + Phần tư luận (8 điểm): Gồm 4 bài toán tự luận + Phần trắc nghiệm (12 điểm): Gồm 40 câu trắc nghiệm
Lời giải và bình luận đề thi VMO 2018
Nội dung Lời giải và bình luận đề thi VMO 2018 Bản PDF Tài liệu gồm 22 trang hướng dẫn giải và bình luận đề thi VMO 2018 (Đề thi chọn học sinh giỏi quốc gia THPT năm 2018 của Bộ giáo dục và Đào tạo). Kỳ thi VMO 2018 được diễn ra trong 2 ngày 11 và 12/01/2018 với tổng cộng 7 bài toán. Tài liệu được biên soạn bởi các thầy, cô giáo và thành viên trong nhóm Epsilon: Trần Nam Dũng, Võ Quốc Bá Cẩn, Lê Phúc Lữ, Trần Quang Hùng, Nguyễn Lê Phước, Nguyễn Văn Huyện.