Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán 11 năm học 2019 - 2020 cụm Tân Yên - Bắc Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi văn hóa môn Toán 11 năm học 2019 – 2020 cụm Tân Yên, tỉnh Bắc Giang; đề thi gồm có 40 câu trắc nghiệm (chiếm 14 điểm) và 03 câu tự luận (chiếm 06 điểm), học sinh có 120 phút để làm bài, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi chọn HSG Toán 11 năm học 2019 – 2020 cụm Tân Yên – Bắc Giang : + Trong tỉnh A tỉ lệ học sinh giỏi môn văn là 9%, học sinh giỏi môn toán là 12% và học sinh giỏi cả hai môn là 7%. Chọn ngẫu nhiên một học sinh của tỉnh. Tính xác suất để học sinh đó học giỏi Văn hoặc học giỏi Toán. + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AB và AC, E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là? A. Tam giác MNE. B. Hình bình hành MNEF với F là điểm trên cạnh BD mà EF // BC. C. Hình thang MNEF với F là điểm trên cạnh BD mà EF // BC. D. Tứ giác MNEF với F là điểm bất kì trên cạnh BD. [ads] + Một công ty trách nhiệm hữu hạn thực hiện việc trả lương cho các kỹ sư theo phương thức sau: Mức lương của quý làm việc đầu tiên cho công ty là 13,5 triệu đồng/quý, và kể từ quý làm việc thứ hai, múc lương sẽ được tăng thêm 500.000 đồng mỗi quý. Tính tổng số tiền lương một kỹ sư nhận được sau ba năm làm việc cho công ty? + Từ các số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên, mỗi số có 6 chữ số đồng thời thỏa mãn điều kiện :sáu số của mỗi số là khác nhau và trong mỗi số đó tổng của 3 chữ số đầu nhỏ hơn tổng của 3 chữ số sau một đơn vị? + Cho hai dãy ghế đối diện nhau, mỗi dãy có năm ghế. Xếp ngẫu nhiên 10 học sinh, gồm 5 nam và 5 nữ ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Tính xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 11 năm 2021 - 2022 trường THPT chuyên Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi (HSG) môn Toán 11 năm học 2021 – 2022 trường THPT chuyên Bắc Ninh, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 13 tháng 04 năm 2022. Trích dẫn đề học sinh giỏi Toán 11 năm 2021 – 2022 trường THPT chuyên Bắc Ninh : + Cho m > 1 là một số nguyên. Chứng minh rằng với mọi số nguyên n có thể biểu diễn dưới dạng n = a + b, trong đó a là một số nguyên nguyên tố cùng nhau với m và b là một số nguyên sao cho b2 ≡ b( mod m). + Đề thi THPT môn Toán gồm 50 câu trắc nghiệm khách quan, mỗi câu có 4 phương án trả lời và chỉ có 1 phương án đúng, mỗi câu trả lời đúng được cộng 0, 2 điểm, điểm tối đa là 10 điểm. Một học sinh có năng lực trung bình đã làm đúng được 25 câu( từ câu 1 đến câu 25), các câu còn lại học sinh đó không biết cách giải nên chọn phương án ngẫu nhiên cả 25 câu còn lại. Tính xác suất để điểm thi môn Toán của học sinh đó lớn hơn 6 điểm nhưng không vượt quá 8 điểm (làm tròn đến hàng phần nghìn). + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC, G là trọng tâm ∆ABM; điểm D(7; −2) nằm trên đoạn MC sao cho GA = GD. Viết phương trình đường thẳng AB, biết hoành độ của A nhỏ hơn 4 và AG có phương trình 3x − y − 13 = 0.
Đề HSG lớp 10 11 môn Toán năm 2021 - 2022 trường chuyên Nguyễn Huệ - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi lớp 10 & lớp 11 môn Toán năm học 2021 – 2022 trường THPT chuyên Nguyễn Huệ, thành phố Hà Nội. Trích dẫn đề HSG lớp 10 & 11 môn Toán năm 2021 – 2022 trường chuyên Nguyễn Huệ – Hà Nội : + Có bao nhiêu số tự nhiên có 8 chữ số, trong đó có hai chữ số lẻ khác nhau mà mỗi chữ số lẻ xuất hiện đúng một lần và ba chữ số chẵn khác nhau mà mỗi chữ số chẵn có mặt đúng hai lần. + Cho tam giác ABC và điểm P thuộc miền trong tam giác ABC. Lấy điểm Q sao cho các đường thẳng AQ, BQ, CQ lần lượt đối xứng với các đường thẳng AP, BP, CP qua đường phân giác trong của các góc A, B, C. Gọi M, N lần lượt là hình chiếu của P lên AB, AC; K, L lần lượt là hình chiếu của Q lên AB, AC. a) Chúng minh rằng các điểm M, N, K, L cùng thuộc một đường tròn. Tìm tâm của đường tròn đó. b) Gọi T là giao điểm của MN và KL.Chứng minh rằng AT vuông góc PQ. + Giả sử a b c là các số thực không âm thỏa mãn a2 + b2 + c2 = 3. Chứng minh?
Đề khảo sát đội tuyển Toán 11 lần 2 năm 2021 - 2022 trường THPT Trần Phú - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát đội tuyển học sinh giỏi môn Toán 11 lần 2 năm học 2021 – 2022 trường THPT Trần Phú, tỉnh Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát đội tuyển Toán 11 lần 2 năm 2021 – 2022 trường THPT Trần Phú – Vĩnh Phúc : + Cho hình hộp ABCD A B C D. Gọi G là trọng tâm BC D a. Xác định thiết diện của hình hộp ABCD A B C D khi cắt bởi mặt phẳng ABG. Thiết diện là hình gì? b. Hai điểm M N lần lượt thuộc hai đoạn thẳng AD A C sao cho MN song song với mặt phẳng BC D biết 1 4 AM AD. Tính tỉ số CN CA. + Trong mặt phẳng tọa độ Oxy cho hai điểm A 1 2 B 3 1 và đường thẳng 1 2 1 1 x y. Tìm tọa độ điểm C thuộc để tam giác ACB cân tại C. + Trong dãy số 0 1 13 23 23 23 CC C tồn tại 3 số hạng liên tiếp tạo thành cấp số cộng, tìm tổng ba số hạng đó.
Đề HSG Toán 11 năm 2020 - 2021 cụm THPT huyện Yên Dũng - Bắc Giang
Ngày 28 tháng 01 năm 2021, cụm THPT huyện Yên Dũng, tỉnh Bắc Giang tổ chức kỳ thi học sinh giỏi cấp cơ sở môn Toán 11 năm học 2020 – 2021. Đề HSG Toán 11 năm 2020 – 2021 cụm THPT huyện Yên Dũng – Bắc Giang (mã đề 111 và mã đề 112) được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 40 câu, chiếm 14 điểm, phần tự luận gồm 03 câu, chiếm 06 điểm, thời gian làm bài 120 phút. Trích dẫn đề HSG Toán 11 năm 2020 – 2021 cụm THPT huyện Yên Dũng – Bắc Giang : + Cho một hình vuông, mỗi cạnh của hình vuông đó được chia thành n đoạn bằng nhau bởi n 1 điểm chia (không tính 2 đầu mút mỗi cạnh). Xét các tứ giác có 4 đỉnh là 4 điểm chia trên 4 cạnh của hình vuông đã cho. Gọi a là số tứ giác tạo thành và b là số các hình bình hành trong a tứ giác đó. Giá trị của n thỏa mãn a b 9 là? + Hội nghị thượng đỉnh Mỹ – Triều lần hai được tổ chức tại Hà Nội, sau khi kết thúc Hội nghị. Ban tổ chức mời 10 người lãnh đạo cấp cao của cả hai nước (Trong đó có Tổng thống Mỹ Donald Trump và Chủ tịch Triều Tiên Kim Jong-un) tham gia họp báo. Ban tổ chức sắp xếp 10 người ngồi vào 10 cái ghế thẳng hàng. Hỏi có bao nhiêu cách sắp xếp sao cho ông Donald Trump và Kim Jong-un ngồi cạnh nhau? + Cho chóp S.ABCD có đáy ABCD là hình bình hành. M là một điểm lấy trên cạnh SA (M không trùng với S và A). Mặt phẳng (α) qua ba điểm M, B, C cắt chóp S.ABCD theo thiết diện là: A. Tam giác B. Hình thang C. Hình bình hành D. Hình chữ nhật.