Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 Toán 12 năm 2023 - 2024 trường THPT Đinh Tiên Hoàng - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát lần 1 môn Toán 12 năm học 2023 – 2024 trường THPT Đinh Tiên Hoàng, thành phố Hà Nội; đề thi có đáp án mã đề 121 – 122 – 123 – 124 – 125 – 126 – 127 – 128. Trích dẫn Đề khảo sát lần 1 Toán 12 năm 2023 – 2024 trường THPT Đinh Tiên Hoàng – Hà Nội : + Anh Nam là sinh viên mới ra trường, nhận được việc làm với mức lương 6 triệu đồng/tháng. Anh ấy dự định hằng tháng sẽ trích ra ít nhất a% lương của mình để gửi tiết kiệm, với mong muốn là sau đúng 2 năm kể từ lần gửi đầu tiên và sau lần gửi cuối cùng đúng 1 tháng tổng số tiền cả gốc và lãi thu được đủ để mua một chiếc xe máy trị giá 25 triệu đồng. Biết rằng lãi suất là 0, 55% / tháng, hai lần gửi liên tiếp cách nhau 1 tháng và theo hình thức lãi kép, đồng thời lãi suất và lương không thay đổi trong suốt thời gian gửi. Hỏi a gần nhất với số nào sau đây? + Cho G là thập giác đều và M là tập hợp 11 điểm gồm 10 đỉnh của thập giác và tâm của G (tham khảo hình vẽ). Chọn ngẫu nhiên 3 điểm thuộc M, xác suất để 3 điểm được chọn lập thành một tam giác bằng? + Trong không gian Oxyz, cho hai điểm A(0; 1; 2), B(2; 1; −8). Từ điểm M(−3; 9; 5) kẻ được bao nhiêu đường thẳng cắt mặt cầu đường kính AB tại hai điểm C, D thỏa mãn MC + MD = 24.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 12 lần 2 năm 2020 - 2021 trường THPT chuyên Thái Bình
Ngày … tháng 01 năm 2021, trường THPT chuyên Thái Bình, tỉnh Thái Bình tổ chức kỳ thi kiểm tra chất lượng học tập môn Toán 12 năm học 2020 – 2021 lần thứ hai, nhằm giúp học sinh khối 12 rèn luyện kiến thức thường xuyên để hướng đến kỳ thi tốt nghiệp THPT Quốc gia 2021 môn Toán. Đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường THPT chuyên Thái Bình mã đề 366 gồm 06 trang, đề được biên soạn theo hình thức đề thi 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường THPT chuyên Thái Bình : + Ông An muốn xây một bể chứa nước dạng hình hộp chữ nhật, phần nắp trên ông để trống một ô có diện tích bằng 20% diện tích của đáy bể. Biết đáy bể là một hình chữ nhật có chiều dài gấp đôi chiều rộng, bể có thể tích chứa tối đa 10m3 nước và giá tiền thuê nhân công là 500000 đồng / m2. Số tiền ít nhất mà ông phải trả cho nhân công gần nhất với đáp án nào dưới đây? + Cho hai khối cầu đồng tâm có bán kính là 1 và 4. Xét hình chóp S.A1A2A3A4A5A6 có đỉnh S thuộc mặt cầu nhỏ và các đỉnh Ai (i = 1..6) thuộc mặt cầu lớn. Tìm giá trị lớn nhất của thể tích khối chóp S.A1A2A3A4A5A6. + Một nhóm học sinh trường THPT chuyên Thái Bình có 8 học sinh nữ và 4 học sinh nam. Xếp ngẫu nhiên nhóm học sinh này thành một hàng dọc. Tính xác suất sao cho không có hai bạn nam nào đứng cạnh nhau.
Đề khảo sát Toán 12 lần 2 năm 2020 - 2021 trường Thuận Thành 1 - Bắc Ninh
Đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường Thuận Thành 1 – Bắc Ninh gồm 07 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, kỳ thi nhằm kiểm tra kiến thức thường xuyên, mục tiêu hướng đến kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Trích dẫn đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường Thuận Thành 1 – Bắc Ninh : + Một sinh viên muốn mua một cái laptop có giá 12,5 triệu đồng nên mỗi tháng gửi tiết kiệm vào ngân hàng 750.000 đồng theo hình thức lãi suất kép với lãi suất 0,72% một tháng. Hỏi sau ít nhất bao nhiêu tháng sinh viên đó có thể dùng số tiền gửi tiết kiệm để mua được laptop? + Cho khối chóp S.ABC có thể tích V. Điểm M nằm trên cạnh SB. Thiết diện qua M song song với SA và BC chia khối chóp S.ABC thành hai phần. Gọi V1 là thể tích phần khối chóp S.ABC chứa cạnh SA. Biết V1/V = 20/7. Tỉ số SM/SB bằng? + Cho một hình nón đỉnh S có độ dài đường sinh bằng 10cm, bán kính đáy bằng 6cm. Cắt hình nón đã cho bởi một mặt phẳng song song với mặt phẳng chứa đáy được một hình nón (N) đỉnh S có chiều cao bằng 16/5cm. Tính diện tích xung quay của khối nón (N).
Đề khảo sát chất lượng lần 2 Toán 12 năm 2020 - 2021 trường Quế Võ 1 - Bắc Ninh
Ngày … tháng 01 năm 2021, trường THPT Quế Võ 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng (KSCL) môn Toán lớp 12 năm học 2020 – 2021 lần thứ hai. Đề khảo sát chất lượng lần 2 Toán 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh được biên soạn theo hình thức trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101, 239, 353, 477, 593, 615, 737, 859, 971, 193, 275, 397. Trích dẫn đề khảo sát chất lượng lần 2 Toán 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh : + Trong Lễ tổng kết Tháng thanh niên, có 10 đoàn viên xuất sắc gồm 5 nam và 5 nữ được tuyên dương khen thưởng. Các đoàn viên này được sắp xếp ngẫu nhiên thành một hàng ngang trên sân khấu để nhận giấy khen. Tính xác suất để trong hàng ngang trên không có bất kì 2 bạn nữ nào đứng cạnh nhau. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. Điểm cách đều các đỉnh của hình chóp là: A. trung điểm SD. B. trung điểm SB. C. Điểm nằm trên đường thẳng d // SA và không thuộc SC. D. trung điểm SC. + Cho tam giác ABC có BC = a, CA = b, AB = c. Nếu a, b, c theo thứ tự lập thành một cấp số nhân thì: A. lnsin A.lnsin C = 2lnsin B. B. lnsin A + lnsin C = 2lnsin B. C. ln sin A.ln sin C = (ln sin B)^2. D. lnsin A + lnsin C = ln (2sin B).
Đề thi KSCL Toán 12 lần 1 năm 2020 - 2021 trường THPT Liễn Sơn - Vĩnh Phúc
Đề thi KSCL Toán 12 lần 1 năm học 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian giáo viên coi thi phát đề), đề thi có đáp án. Trích dẫn đề thi KSCL Toán 12 lần 1 năm 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc : + Một cửa hàng bán bưởi Đoan Hùng của Phú Thọ với giá bán mỗi quả là 50.000 đồng. Với giá bán này thì của hàng chỉ bán được khoảng 40 quả bưởi. Cửa hàng này dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 5000 đồng thì số bưởi bán được tăng thêm là 50 quả. Xác định giá bán để của hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập về ban đầu mỗi quả là 30.000 đồng. + Chọn khẳng định sai: A. Mỗi đỉnh của khối đa diện là đỉnh chung của ít nhất 3 mặt. B. Hai mặt bất kì của khối đa diện luôn có ít nhất một điểm chung. C. Mỗi mặt của khối đa diện có ít nhất ba cạnh. D. Mỗi cạnh của khối đa diện là cạnh chung của đúng 2 mặt của khối đa diện. + Cho tứ diện ABCD có AB = CD. Mặt phẳng (a) qua trung điểm của AC và song song với AB, CD cắt ABCD theo thiết diện là: A. Hình vuông B. Hình thoi C. Hình tam giác D. Hình chữ nhật.