Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG tỉnh Toán 12 năm 2019 - 2020 sở GDĐT Lâm Đồng

Thứ Sáu ngày 20 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm học 2019 – 2020. Đề thi HSG tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Lâm Đồng gồm 06 bài toán chung cho tất cả các thí sinh và 02 bài toán riêng cho thí sinh hệ THPT và hệ GDTX, đề thi gồm có 02 trang, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Lâm Đồng : + Một chiếc cốc hình trụ có bán kính đáy bằng 5cm và chiều cao 20cm bên trong có một khối lập phương cạnh 6cm như hình minh họa. Khi đổ nước vào cốc, khối lập phương sẽ nổi 1/3 thể tích của nó lên trên mặt nước (mặt trên khối lập phương song song với mặt nước). Tính thể tích lượng nước đổ vào cốc để mặt trên của khối lập phương ngang bằng với miệng cốc khi nó nổi lên (lấy π = 3,14). [ads] + Học sinh A thiết kể bảng điều khiển điện tử mở cửa phòng học của lớp mình. Bảng gồm 15 nút, mỗi nút được ghi một số từ 1 đến 15 và không có hai nút nào được ghi cùng một số. Để mở cửa cần nhấn ba nút khác nhau sao cho tổng các số trên ba nút đó là số chẵn. Học sinh B không biết quy tắc mở cửa trên, đã nhấn ngẫu nhiên ba nút khác nhau trên bảng điều khiển. Tính xác suất để B mở được cửa phòng học đó. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a, SA vuông góc với mặt đáy, SB tạo với mặt đáy một góc 60°, điểm E thuộc cạnh SA và AE = a√3/3. Mặt phẳng (BCE) cắt SD tại F. Tính thể tích khối đa diện V_ABCDEF và khoảng cách giữa hai đường thẳng SD và BE.

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Bến Tre
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bến Tre. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Bến Tre : + Gọi S là tập tất cả các số có 7 chữ số mà tổng các chữ số của nó bằng 59. Lấy ngẫu nhiên một số trong S. Tính xác suất để số được chọn chia hết cho 11. + Cho tứ giác ABCD nội tiếp đường tròn (O). E là giao điểm của AB và CD, F là giao điểm của AD và BC. Gọi M, N lần lượt là trung điểm của BD, AC. Chứng minh rằng: đường tròn (MNF) tiếp xúc với EF. + Cho số thực x, ký hiệu [x] là số nguyên lớn nhất không vượt quá x. Thực hiện các yêu cầu sau: a) Với p là số nguyên tố có dạng 4k + 1, k thuộc N*. Tính. b) Với p là số nguyên tố lẻ, q là số nguyên dương không chia hết cho p. Chứng minh rằng.
Đề chọn học sinh giỏi tỉnh Toán 12 năm 2022 - 2023 sở GDĐT Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nghệ An; đề thi gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề). Trích dẫn Đề chọn học sinh giỏi tỉnh Toán 12 năm 2022 – 2023 sở GD&ĐT Nghệ An : + Mạng lưới giao thông trong một thành phố được bố trí dạng lưới chữ nhật kích thước 10 × 12 như hình vẽ. An lần đầu đến thành phố, muốn đi qua thành phố từ điểm xuất phát A đến điểm cuối B. An chỉ biết xác định các hướng đi để quãng đường đi là ngắn nhất. Giả sử tại các điểm giao nhau An có thể đi ngẫu nhiên theo một trong các hướng đã định. Tính xác suất để An không đi qua Quảng trường trung tâm C. + Cho tứ diện ABCD có AB = 10, AC = AD = 20. Biết rằng BAC + CAD + DAB = ABC + CBD + DBA = ACB + BCD + DCA = 180. Tính chu vi tam giác BCD và tìm giá trị nhỏ nhất của biểu thức P = MA + MB + MC + MD khi điểm M thay đổi trong không gian. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh BC = a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách từ điểm A đến mặt phẳng (SCD) bằng 2 a và đường thẳng SC tạo với mặt phẳng (ABCD) một góc với 1 tan 2. a) Tính thể tích khối chóp S.ABCD theo a. b) Tính sin của góc giữa đường thẳng SC với mặt phẳng SAD.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển thành phố dự thi học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra trong hai ngày: vòng 1: 22/10/2022 và vòng 2: 23/10/2022. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Hà Nội : + Cho tam giác nhọn ABC nội tiếp đường tròn (O). Trên cung nhỏ AC lấy điểm D sao cho tứ giác ABCD không là hình thang. Đường tròn ngoại tiếp tam giác AOD và đường tròn ngoại tiếp tam giác BOC cắt nhau tại hai điểm phân biệt H và O. Gọi I là giao điểm của AC và BD. a) Chứng minh đường thẳng HI vuông góc với đường thẳng HO. b) Gọi M là trung điểm của CD và N là hình chiếu của I lên BC. Chứng minh bốn điểm M, H, N và C cùng thuộc một đường tròn. + Cho tập hợp M gồm 10 màu khác nhau và hai đoạn thẳng AB, CD cùng có độ dài bằng 100. Chia AB thành 100 đoạn và tô mỗi màu trong M cho đúng 10 đoạn. Chia CD thành 10 đoạn và tô mỗi màu trong M cho đúng 1 đoạn. Chồng khớp AB lên CD sao cho A trùng C và B trùng D. Gọi S là tổng độ dài của các phần có chung màu trên AB và CD. a) Chứng minh rằng tồn tại một cách chia và tô màu cho AB, đồng thời tồn tại một cách chia CD mà với mọi cách tô màu cho CD thì S = 10. b) Chứng minh rằng với mọi cách chia và tô màu cho AB, đồng thời với mọi cách chia CD, luôn tồn tại cách tô màu cho CD để S ≥ 10. + Cho số nguyên dương n lớn hơn 3. Viết các số 1, 2, …, n vào các ô vuông của bảng ô vuông cỡ n x n sao cho hai ô vuông khác nhau được viết hai số khác nhau. Chứng minh rằng tồn tại hai ô vuông nằm trên cùng một hàng hoặc nằm trên cùng một cột sao cho hiệu của hai số được viết trên hai ô vuông đó lớn hơn n²/2.
Đề học sinh giỏi Toán 12 cấp tỉnh năm 2022 - 2023 sở GDĐT Bình Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào ngày 22 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi Toán 12 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Bình Định : + Cho biểu thức: (x3 − x − 2)^2022. Tính tổng S của các hệ số của x^(2k + 1) với k nguyên dương trong khai triển biểu thức trên. + Tìm tất cả các số nguyên dương có 100 chữ số thỏa mãn điều kiện tất cả các chữ số của nó đều là lẻ và hiệu của hai chữ số liên tiếp của số đó bằng 2. + Cho tam giác nhọn ABC (AB < AC) nội tiếp trong đường tròn tâm O. Trên đoạn OA lấy điểm J không trùng với A và O, đường thẳng qua J vuông góc với OA cắt các đường thẳng AB, AC, BC lần lượt tại M, N, Q. Các đường thẳng BN và CM cắt nhau tại K, đường thẳng AK cắt BC tại P. Gọi I là trung điểm BC. 1. Chứng minh tứ giác MNIP nội tiếp. 2. Gọi L là trực tâm của tam giác ABC, H là trực tâm của tam giác AMN. Chứng minh ba điểm H, K, L thẳng hàng.