Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Hải Dương

Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Hải Dương Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào môn Toán năm 2023 - 2024 sở GD&ĐT Hải Dương Đề thi tuyển sinh vào môn Toán năm 2023 - 2024 sở GD&ĐT Hải Dương Chào mừng quý thầy cô và các em học sinh đến với bài thi chính thức vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Hải Dương. Kỳ thi sẽ diễn ra vào chiều thứ Sáu, ngày 02 tháng 06 năm 2023. Trích dẫn một số câu hỏi từ đề tuyển sinh: Câu 1: Một đội công nhân phải trồng 96 cây xanh. Ban đầu đội dự định chia đều số cây cho mỗi công nhân nhưng sau đó có 4 công nhân được điều đi làm việc khác, khi đó mỗi công nhân còn lại phải trồng thêm 4 cây. Hỏi ban đầu đội công nhân có bao nhiêu người? Câu 2: Cho parabol (P): y = x2 và đường thẳng (d): y = 3x + m. Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thoả mãn x1 + 2x2 = m + 3. Câu 3: Cho tam giác ABC có ba góc nhọn và các đường cao AF, BD, CE cắt nhau tại H. Trong đó: Chứng minh rằng DAH = DEH. Chứng minh rằng tứ giác MDOE nội tiếp, với O và M lần lượt là trung điểm của BC và AH. Chứng minh rằng AH2 = 2MK(AF + HF), với K là giao điểm của AH và DE. Chúc quý thầy cô và các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT tỉnh Quảng Ninh
Sáng thứ Tư ngày 02 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Ninh tổ chức kỳ thi tuyển sinh vào lớp 10 hệ THPT môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT tỉnh Quảng Ninh (dành cho mọi thí sinh) gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT tỉnh Quảng Ninh : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Lớp 9B có 42 học sinh. Vừa qua lớp đã phát động phong trào tặng sách cho các bạn đang cách ly vì dịch bệnh Covid-19. Tại buổi phát động, mỗi học sinh trong lớp đều tặng 3 quyển sách hoặc 5 quyển sách. Kết quả cả lớp đã tặng được 146 quyển sách. Hỏi lớp 9B có bao nhiêu bạn tặng 3 quyển sách và bao nhiêu bạn tặng 5 quyển sách? + Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (O) (A là tiếp điểm). Qua A kẻ đường thẳng song song với MO, đường thẳng này cắt đường tròn (O) tại C (C khác A). Đường thẳng MC cắt đường tròn (O) tại điểm B (B khác C). Gọi H là hình chiếu của O trên BC. a. Chứng minh tứ giác MAHO nội tiếp. b. Chứng minh AB/AC = MA/MC. c. Chứng minh BAH = 90°. d. Vẽ đường kính AD của đường tròn (O). Chứng minh hai tam giác ACH và DMO đồng dạng. + Cho các số thực không âm a và b. Tìm giá trị nhỏ nhất của biểu thức P.
Đề Toán thi vào 10 chuyên năm 2021 trường ĐHKH Huế (vòng 2 - chuyên Tin)
Thứ Hai ngày 31 tháng 05 năm 2021, Hội đồng tuyển sinh lớp 10 trường Đại học Khoa học – Đại học Huế, tỉnh Thừa Thiên Huế tổ chức kỳ thi tuyển sinh lớp 10 THPT chuyên năm 2021 môn Toán vòng 2 – chuyên Tin. Đề Toán thi vào 10 chuyên năm 2021 trường Đại học Khoa học Huế (vòng 2 – chuyên Tin) gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề Toán thi vào 10 chuyên năm 2021 trường Đại học Khoa học Huế (vòng 2 – chuyên Tin) : + Để tính nhẩm bình phương của một số nguyên tận cùng bằng 5, bạn B thiết lập công thức sau: (a5) = (10a + 5)2 = 100a2 + 100a + 25 = 100a(a + 1) + 25. Hãy áp dụng công thức trên để tính 35^2, 95^2. Không dùng máy tính, cho biết 42025 là bình phương của số nguyên dương nào? Hãy giải thích. + Cho đường tròn (O) có dây cung BC cố định không đi qua tâm O. Điểm A di động trên (O) sao cho tam giác ABC có 3 góc nhọn. Các đường cao BE, CF của tam giác ABC cắt nhau tại H. Gọi K là giao điểm của hai đường thẳng EF và BC, đoạn thẳng KA cắt (O) tại điểm M. Chứng minh rằng: a. BCEF là tứ giác nội tiếp. b. KM.KA = KE.KF. c. Đường thẳng MH luôn đi qua một điểm cố định khi A thay đổi. + Trong một khu phố người ta làm các đường dưới dạng bàn cờ: Một bạn xuất phát từ vị trí A muốn đi đến vị trí B (như hình vẽ bên). Hỏi bạn đó có thể chọn được bao nhiêu cách đi khác nhau? Biết rằng, bạn này chỉ chọn đường đi ngắn nhất và chỉ đi trên các đường người ta đã làm.
Đề Toán thi vào 10 chuyên năm 2021 trường ĐHKH Huế (vòng 2 - chuyên Toán)
Thứ Hai ngày 31 tháng 05 năm 2021, Hội đồng tuyển sinh lớp 10 trường Đại học Khoa học – Đại học Huế, tỉnh Thừa Thiên Huế tổ chức kỳ thi tuyển sinh lớp 10 THPT chuyên năm 2021 môn Toán vòng 2 – chuyên Toán. Đề Toán thi vào 10 chuyên năm 2021 trường Đại học Khoa học Huế (vòng 2 – chuyên Toán) gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề Toán thi vào 10 chuyên năm 2021 trường Đại học Khoa học Huế (vòng 2 – chuyên Toán) : + Tìm tất cả các số tự nhiên a và b (a > 1, b > 1) sao cho: (ab – 1) chia hết cho (a – 1)(b – 1). + Cho nửa đường tròn tâm O đường kính AB, điểm C thuộc nửa đường tròn và không trùng với A và B, D là điểm chính giữa cung AC, hai đường thẳng BC và AD cắt nhau tại E, đường thẳng BD cắt đường thẳng AC tại F và cắt tiếp tuyến tại A của nửa đường tròn tại G. a. Chứng minh tứ giác ABEG nội tiếp. b. Chứng minh điểm E luôn thuộc đường tròn (S) cố định khi C thay đổi. c. Gọi H là giao điểm thứ hai của đường thẳng AC với đường tròn (S). Chứng minh tứ giác BFEH nội tiếp. + Trong mặt phẳng Oxy, điểm X được gọi là điểm “đẹp” nếu hoành độ và tung độ của X đều là các số hữu tỉ. Chứng minh rằng nếu tam giác ABC đều thì một trong ba điểm A, B, C có ít nhất một điểm không là điểm đẹp.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 - 2022 sở GDĐT An Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT An Giang; kỳ thi được diễn ra vào ngày 29 tháng 05 năm 2021; đề thi có đáp án và lời giải chi tiết (lời giải chi tiết được biên soạn bởi tác giả Đặng Lê Gia Khánh và Mai Đăng Khoa). Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT An Giang : + Cho tam giác ABC (AB < BC) nội tiếp trong đường tròn (O) đường kính AC. Gọi I là một điểm thuộc đoạn OC (I khác O và C). Qua I kẻ đường vuông góc với AC cắt BC tại E và AB kéo dài tại D. Gọi K là điểm đối xứng của C qua điểm I. a. Chứng minh rằng các tứ giác BDCI và AKED nội tiếp. b. Chứng minh IC.IA = IE.ID. + Cho tam giác ABC đều có diện tích 36 cm2. Gọi M, N, P là ba điểm lần lượt nằm trên ba cạnh AB, BC, CA sao cho MN vuông góc BC; NP vuông góc AC; PM vuông góc AB. Chứng tỏ rằng tam giác MNP đều và tính diện tích tam giác MNP. + Hai ngọn nến hình trụ có chiều cao và đường kính khác nhau được đặt thẳng đứng trên mặt bàn. Ngọn nến thứ nhất cháy hết trong 6 giờ, ngọn nến thứ hai cháy hết trong 8 giờ. Hai ngọn nến được thắp sáng cùng lúc, sau 3 giờ chúng có cùng chiều cao. a. Tìm tỷ lệ chiều cao ban đầu của hai ngọn nến. b. Biết tổng chiều cao của hai ngọn nến là 63 cm. Tính chiều cao mỗi ngọn nến.