Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 9 môn Toán năm 2023 2024 trường THCS Nguyễn Tri Phương TP HCM

Nội dung Đề cuối học kì 1 (HK1) lớp 9 môn Toán năm 2023 2024 trường THCS Nguyễn Tri Phương TP HCM Bản PDF - Nội dung bài viết Đề cuối học kì 1 Toán lớp 9 năm 2023-2024 trường THCS Nguyễn Tri Phương TP HCM Đề cuối học kì 1 Toán lớp 9 năm 2023-2024 trường THCS Nguyễn Tri Phương TP HCM Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 1 môn Toán năm học 2023-2024 tại trường THCS Nguyễn Tri Phương, quận 10, TP Hồ Chí Minh. Đề thi bao gồm các câu hỏi thú vị và phù hợp với trình độ học sinh. 1. Tính chiều cao AB của tháp truyền hình: Từ vị trí C của một tòa nhà có chiều cao CD = 35m, người ta nhìn thấy đỉnh A của tháp truyền hình với góc nâng 40 độ và nhìn thấy chân của tháp với góc hạ 25 độ. Hãy tính chiều cao AB của tháp truyền hình. 2. Học sinh trường THCS Nguyễn Tri Phương tham gia thực hiện công trình măng non "Học bổng Nụ cười hồng Nguyễn Tri Phương". Tính số tiền tiết kiệm sau mỗi ngày và xác định số ngày cần tiết kiệm để thực hiện một công trình trị giá 12,000,000 đồng. 3. Giá bánh mua dịp mùa Giáng sinh: Chương trình giảm giá khi mua bánh, biết rằng nếu mua nhiều hơn 2 hộp bánh, từ hộp thứ ba trở đi sẽ được giảm 10,000 đồng. Hỏi giá ban đầu của mỗi hộp bánh và xác định số hộp bánh bạn Bình có thể mua được với số tiền nhất định. Đề thi Toán lớp 9 học kì 1 năm học 2023-2024 tại trường THCS Nguyễn Tri Phương TP HCM không chỉ đánh giá kiến thức mà còn khuyến khích học sinh suy nghĩ logic và áp dụng kiến thức vào thực tế. Chúc các em ôn tập tốt và làm bài thi thật tốt!

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Thạch Thán - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Thạch Thán – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Thạch Thán – Hà Nội : + Cho đường thẳng (d) có phương trình y = ax + b. a) Tìm a, b biết đồ thị hàm số đi qua điểm A(0; 2) và điểm B (-2; -4). b) Tìm phương trình đường thẳng (d’) song song với (d), cắt trục hoành tại điểm 3, cắt trục tung tại C. Tính độ dài AC. + Cho tam giác ABC vuông tại A, đường cao AH, AB = 8cm, AC = 15cm. a) Tính BC, AH, HC. b) Chứng minh SinB = CosC c) Gọi P, Q lần lượt là hình chiếu của H trên AB, AC. Kẻ tiếp tuyến CM với đường tròn ngoại tiếp tứ giác APHQ (M thuộc cung nhỏ AQ). Chứng minh CM2 = CQ.CA. d) Tính PA.PB + AQ.QC. + Thực hiện các phép tính sau.
Đề thi HK1 Toán 9 năm 2021 - 2022 trường THCS THPT Lê Quý Đôn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi HK1 Toán 9 năm 2021 – 2022 trường THCS & THPT Lê Quý Đôn – Hà Nội.
Đề thi cuối học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Bế Văn Đàn - Hà Nội
Đề kiểm tra cuối học kỳ 1 môn Toán lớp 9 năm học 2021 – 2022 trường THCS Bế Văn Đàn, quận Đống Đa, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút; kỳ thi được diễn ra vào sáng thứ Năm ngày 06 tháng 01 năm 2022.
Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Cao Bá Quát - Hà Nội
Đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Cao Bá Quát – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Cao Bá Quát – Hà Nội : + Cho (O;R), từ điểm S ở ngoài đường tròn (O;R) sao cho OS = 2R, kẻ hai tiếp tuyến SA, SB với đường tròn (A, B là tiếp điểm), gọi H là giao điểm của SO và AB. a) Chứng minh: SO ⊥ AB. b) Chứng minh: OH.OS = R2. c) Chứng minh: ∆SBA đều. d) Vẽ cát tuyến SMN của (O;R), xác định vị trí của cát tuyến SMN để SM + SN đạt giá trị nhỏ nhất. + Cho hàm số bậc nhất : y = (m – 2)x + 3 với m là tham số. a) Tìm m đề hàm số đồng biến. b) Vẽ đồ thị hàm số trên khi m = 3. c) Tính diện tích của tam giác giới hạn bởi đồ thị vừa vẽ ở câu b và hai trục tọa độ. + Cho hai biểu thức 4 x A x 2 và 2 2 B x 2 x 2 với x 0 x 4. a) Tính giá trị của biểu thức A khi x 16. b) Rút gọn biểu thức B. c) Tìm các giá trị nguyên của x để khi 1 B A 4.