Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL học kỳ 2 Toán 9 năm 2018 - 2019 sở GDĐT Vĩnh Phúc

Thứ Sáu ngày 10 tháng 05 năm 2019, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng cuối học kỳ 2 môn Toán lớp 9 năm học 2018 – 2019. Đề KSCL học kỳ 2 Toán 9 năm 2018 – 2019 sở GD&ĐT Vĩnh Phúc mã đề 003 gồm 1 trang, đề được biên soạn theo dạng trắc nghiệm khách quan kết hợp với tự luận theo tỉ lệ điểm 3:7, phần trắc nghiệm gồm 6 câu, phần tự luận gồm 4 câu, học sinh có 90 phút để làm bài thi. Trích dẫn đề KSCL học kỳ 2 Toán 9 năm 2018 – 2019 sở GD&ĐT Vĩnh Phúc : + Cho parabol (P): y = x^2 và đường thẳng (d): y = 2x + 3. Hãy vẽ đồ thị (P) và (d) trên cùng một mặt phẳng tọa độ. + Một người dự định đi từ Vĩnh Phúc đến Phủ Lý cách nhau 90km. Vì có việc gấp cần đến Phú Lý trước giờ dự định 45 phút, nên người ấy phải tăng vận tốc thêm mỗi giờ 10 km. Hãy tính vận tốc mà người đó dự định đi. [ads] + Từ một điểm M ở ngoài đường tròn (O), vẽ hai tiếp tuyến MA, MB và cát tuyến MCD không đi qua tâm O đến đường tròn (A, B là hai tiếp điểm; C nằm giữa M và D, MCD nằm trên nửa mặt phẳng chứa A có bờ là đường thẳng MO). Gọi I là trung điểm của CD. a) Chứng minh tứ giác MACB và tứ giác MIOB nội tiếp. b) Gọi H là giao điểm của AB và MO. Chứng minh MA^2 = MC.MD và MC.MD = MH.MO. c) Chứng minh AB là phân giác của góc CHD.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 năm 2023 - 2024 phòng GDĐT Hai Bà Trưng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào tháng 03 năm 2024. Trích dẫn Đề khảo sát Toán 9 năm 2023 – 2024 phòng GD&ĐT Hai Bà Trưng – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hồ Thiền Quang là một hồ nước tự nhiên đã có từ rất lâu giữa lòng Thủ đô, nơi đây có phong cảnh hữu tình, không khí trong lành tươi mát, được người dân Hà Nội đặc biệt yêu thích. Hồ có chu vi vòng hồ dài 1,6 km. Một người dân tập thể dục vòng quanh bờ hồ, lúc đầu người đó đi bộ với vận tốc 5 km/h sau đó người đó chạy bộ với vận tốc 12 km/h đến khi nghỉ thì người đó đã đi được 5 vòng quanh bờ hồ, biết thời gian chạy bộ nhiều hơn quãng thời gian đi bộ là 6 phút. Tính thời gian tập thể dục của người đó. + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng d: y = mx + m + 1 (với m là tham số). a) Tìm m để đường thẳng d luôn cắt parabol (P) tại hai điểm phân biệt. b) Gọi x1, x2 lần lượt là hoành độ giao điểm của đường thẳng d và parabol (P). Tìm giá trị của m để x1, x2 thỏa mãn x12(x2 + 1) + x22(x1 + 1) = 5. + Cho đường tròn (O) có bán kính R và một điểm A nằm bên ngoài đường tròn (O). Kẻ hai tiếp tuyến AB, AC với đường tròn (O), B và C là các tiếp điểm. Qua B kẻ đường thẳng song song với AC cắt (O) tại điểm thứ hai là D. 1) Chứng minh tứ giác ABOC nội tiếp được một đường tròn. 2) Nối AD cắt đường tròn (O) tại điểm E khác D. Chứng minh AB2 = AE.AD và AEC = BEC. 3) Khi OA = R3, tính diện tích tam giác BCD theo R.
Đề khảo sát Toán 9 tháng 3 năm 2024 phòng GDĐT Gia Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 tháng 3 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Gia Lâm, thành phố Hà Nội. Trích dẫn Đề khảo sát Toán 9 tháng 3 năm 2024 phòng GD&ĐT Gia Lâm – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, hai tổ sản xuất 800 sản phẩm trong một thời gian nhất định. Khi thực hiện, tổ I do sự cố về máy nên đã bị giảm 15% kế hoạch, còn tổ II nhờ áp dụng kĩ thuật mới nên đã vượt mức 25% kế hoạch. Vì vậy, trong thời gian quy định cả hai tổ làm được 880 sản phẩm. Tính số sản phẩm của mỗi tổ phải làm theo kế hoạch. + Trong mặt phẳng toạ độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = -2mx + m2 + 2. a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt với mọi giá trị của m. b) Với m = -1, tìm toạ độ giao điểm A, B của (d) và (P). Xác định vị trí của C trên cung AB của parabol sao cho diện tích tam giác ABC lớn nhất. + Cho tam giác ABC vuông tại A. Vẽ đường tròn (O) đường kính AB cắt BC tại D. Từ A kẻ AH vuông góc với OC tại H. 1) Chứng minh tứ giác AHDC nội tiếp. 2) Gọi I là trung điểm của BD, tia IO cắt tia CA tại E. Chứng minh IB.IC = IO.IE. 3) Gọi K, M lần lượt là giao điểm của AH với BD và đường tròn (O). Chứng minh HM là phân giác của BHD và KI.KC = KB.KD. 4) BE cắt đường tròn (O) tại N. Chứng minh N, H, D thẳng hàng.
Đề khảo sát lần 1 Toán 9 năm 2023 - 2024 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng lần 1 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2024.
Đề kiểm tra Toán 9 (chuyên) đợt 2 năm 2023 - 2024 trường chuyên KHTN - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra kiến thức môn Toán 9 (Toán chuyên) đợt 2 năm học 2023 – 2024 trường THPT chuyên KHTN, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 10 tháng 03 năm 2024. Trích dẫn Đề kiểm tra Toán 9 (chuyên) đợt 2 năm 2023 – 2024 trường chuyên KHTN – Hà Nội : + Tìm các số tự nhiên n sao cho 3n + n2 + 3 là bình phương của một số tự nhiên. + Cho tam giác ABC có BC là cạnh nhỏ nhất. Trên cạnh AC, AB lấy các điểm E, F sao cho EBC = FCB = BAC. Tiếp tuyến tại E và F của đường tròn (J) ngoại tiếp tam giác AEF giao nhau tại Q. BE giao CF tại K. a) Chứng minh rằng E, F, Q, K cùng thuộc một đường tròn. b) Chứng minh rằng JB = JC. c) QK giao AB, AC lần lượt tại T, S. Chứng minh rằng QT = KS. + Cho n là số nguyên dương. Ban đầu, trên một bảng trắng có viết đúng (n + 1)2 số nguyên dương phân biệt là các ước của 10n. Mỗi bước ta chọn 2 số a, b phân biệt bất kỳ trên bảng, sau đó xóa 2 số này và viết thêm 2 số (bằng nhau) có giá trị là ước chung lớn nhất của a và b. Tiếp tục thực hiện như vậy cho đến khi tất cả các số trên bảng bằng nhau. Tìm giá trị nhỏ nhất của các bước thực hiện có thể có.