Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán (chuyên) vào 10 năm 2024 - 2025 trường chuyên Lam Sơn - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán (dành cho thí sinh thi vào chuyên Toán và chuyên Tin học) tuyển sinh vào lớp 10 năm học 2024 – 2025 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán (chuyên) vào 10 năm 2024 – 2025 trường chuyên Lam Sơn – Thanh Hóa : + Cho n là số nguyên dương và d là ước dương của 2 2 n chứng minh 2 n d không phải là số chính phương. + Tam giác nhọn không cân ABC nội tiếp đường tròn O đường cao AH H BC. Gọi K L lần lượt là hình chiếu vuông góc của điểm H trên các cạnh AB AC. Đường thẳng KL cắt đường tròn O tại hai điểm P Q (P và B cùng phía đối với AC). a) Chứng minh tứ giác BKLC nội tiếp đường tròn. b) Chứng minh BC là tiếp tuyến của đường tròn ngoại tiếp tam giác PHQ. c) AH cắt lại đường tròn O tại TT A. Gọi D là hình chiếu vuông góc của H lên KL AD cắt đường tròn O tại MM A. Chứng minh 0 HMT 90. + Chứng minh rằng từ 6 số vô tỉ tùy ý ta có thể chọn được 3 số abc sao cho cả 3 số a bb cc a đều là số vô tỉ. Bài toán còn đúng không nếu ban đầu là 4 số?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tuyển sinh THPT năm học 2017 2018 môn Toán trường THPT Đào Duy Từ Thanh Hóa
Nội dung Đề thi thử tuyển sinh THPT năm học 2017 2018 môn Toán trường THPT Đào Duy Từ Thanh Hóa Bản PDF - Nội dung bài viết Đề thi thử tuyển sinh THPT năm học 2017 2018 môn Toán trường THPT Đào Duy Từ Thanh Hóa Đề thi thử tuyển sinh THPT năm học 2017 2018 môn Toán trường THPT Đào Duy Từ Thanh Hóa Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THPT Đào Duy Từ – Thanh Hóa bao gồm 5 bài toán tự luận, với lời giải chi tiết để học sinh tham khảo và ôn tập. Một số bài toán trong đề bao gồm: Cho đoạn thẳng AB và C là một điểm nằm giữa A và B. Trên cùng một nửa mặt phẳng bờ AB vẽ hai tia Ax By vuông góc với AB. Trên tia Ax lấy một điểm I (I khác A), đường thẳng vuông góc với tia CI tại C cắt tia By tại K. Đường tròn đường kính IC cắt IK tại điểm thứ hai P. Yêu cầu: chứng minh bốn điểm C, P, K, B cùng thuộc một đường tròn, chứng minh AI.BK = AC.BC và xác định vị trí điểm C trên đoạn thẳng AB sao cho diện tích hình thang vuông ABKI là lớn nhất. Giải phương trình (a – 1)x^2 – 4x + 3 = 0 trong các trường hợp a = 1 và a = 2 để tìm nghiệm của phương trình. Đây là một đề thi thử có tính logic cao, giúp học sinh rèn luyện kỹ năng giải các bài toán khó, từ đó chuẩn bị tốt cho kỳ thi sắp tới. Hãy cùng học sinh tham gia vào việc ôn tập và giải đề thi này để nâng cao kiến thức và kỹ năng toán học của mình!
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 1)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 1) Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội Đề thi tuyển sinh lớp 10 THPT năm học 2017-2018 môn Toán trường THPT Chuyên ĐH Sư phạm Hà Nội (Vòng 1) gồm 5 bài toán tự luận, có lời giải chi tiết. Trong đề thi, có những bài toán như sau: 1. Anh Nam đi xe đạp từ điểm A đến điểm C. Trên đoạn đường AB ban đầu (với B nằm giữa A và C), anh Nam đi với vận tốc không đổi a (km/h) và mất 1,5 giờ để đi từ A đến B. Trên đoạn đường BC, anh Nam đi chậm dần đều với vận tốc tại thời điểm t (tính bằng giờ) kể từ B là v = -8t + a (km/h). Tính quãng đường AB biết rằng đến C xe dừng hẳn và quãng đường BC dài 16km. 2. Cho đường tròn (O) bán kính R ngoại tiếp tam giác ABC có ba góc nhọn. Các tiếp tuyến của đường tròn (O) tại các điểm B, C cắt nhau tại điểm P. Gọi D, E là chân đường vuông góc kẻ từ P xuống AB và AC; M là trung điểm của BC. Phần sau của bài toán yêu cầu chứng minh góc MEP bằng góc MDP, chứng minh đường thẳng DE đi qua một điểm cố định và tính diện tích tam giác ADE khi tam giác ABC đều. Đề thi này mang tính chất thách thức và đòi hỏi sự đắn đo và khéo léo trong việc suy luận và giải quyết vấn đề.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Phú Thọ
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Phú Thọ Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Phú Thọ Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Phú Thọ Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Phú Thọ là một bộ đề gồm 5 bài toán tự luận, được cung cấp lời giải chi tiết cho từng bài toán. Đây là một trong những đề thi quan trọng để học sinh thử sức và chuẩn bị cho kỳ thi tuyển sinh vào lớp 10. Trong đề thi, có các bài toán đa dạng về nội dung và độ khó, đòi hỏi học sinh phải từng bước suy luận logic để tìm ra câu trả lời chính xác. Ví dụ như bài toán về tứ giác nội tiếp đường tròn có giao điểm I, các bước chứng minh và đồng dạng tam giác, hoặc bài toán về parabol và phương trình đường thẳng đi qua hai điểm trên parabol. Đề thi không chỉ giúp học sinh rèn luyện kỹ năng giải toán mà còn giúp học sinh phát triển tư duy logic, sự sáng tạo và khả năng làm việc độc lập. Việc luyện giải các đề thi thực tế như vậy giúp học sinh tự tin hơn khi đối diện với kỳ thi chính thức.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Ninh Bình
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Ninh Bình Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT Ninh Bình năm học 2017-2018 môn Toán Đề thi tuyển sinh THPT Ninh Bình năm học 2017-2018 môn Toán Đề thi tuyển sinh lớp 10 THPT năm học 2017-2018 môn Toán của Sở Giáo dục và Đào tạo Ninh Bình bao gồm 5 bài toán tự luận, với lời giải chi tiết. Một trong những bài toán trong đề thi là: + Một ô tô dự định đi từ bến xe A đến bến xe B cách nhau 90 km với vận tốc không đổi. Tuy nhiên, ô tô khởi hành muộn 12 phút so với dự định. Để đến bến xe B đúng giờ, ô tô đã tăng vận tốc lên 5 km/h so với vận tốc dự định. Hãy tìm vận tốc dự định của ô tô. Bên cạnh đó, còn có bài toán khác đề cập đến đường tròn, với các yêu cầu sau: + Chứng minh tứ giác AOBC nội tiếp + Chứng minh CH.CO = CM.CN + Chứng minh 2 góc POE và OFQ bằng nhau + Chứng minh: PE + QF >= PQ Đề thi này đòi hỏi học sinh có kiến thức vững chắc về các khái niệm cơ bản trong toán học để giải quyết các bài toán phức tạp. Hy vọng rằng đề thi sẽ giúp các thí sinh rèn luyện và nâng cao kiến thức, kỹ năng trong môn Toán. Hãy cố gắng học tập và làm bài thi tốt, chúc các em thành công!