Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử TN THPT 2022 môn Toán lần 1 trường Nguyễn Đăng Đạo - Bắc Ninh

Ngày … tháng 11 năm 2021, trường THPT Nguyễn Đăng Đạo, huyện Tiên Du, tỉnh Bắc Ninh tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông 2022 môn Toán lần thứ nhất, kỳ thi được diễn ra trong giai đoạn giữa học kì 1 năm học 2021 – 2022. Đề thi thử TN THPT 2022 môn Toán lần 1 trường Nguyễn Đăng Đạo – Bắc Ninh mã đề 001 gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề thi thử TN THPT 2022 môn Toán lần 1 trường Nguyễn Đăng Đạo – Bắc Ninh : + Cho hàm số 3 2 y x mx m x 2 3 1 2 có đồ thị là C và đường thẳng d y x 2 S là tập các giá trị m thỏa mãn d cắt C tại 3 điểm phân biệt A B C sao cho diện tích tam giác MBC bằng 2 2 với M(3;1). Tính tổng bình phương các phần tử của S? + Cho hàm số y f x xác định trên tập D. Số M được gọi là giá trị lớn nhất của hàm số y f x trên D nếu A. f x M với mọi x D và tồn tại 0 x D sao cho f x M 0. B. f x M với mọi x D. C. f x M với mọi x D. D. f x M với mọi x D và tồn tại 0 x D sao cho f x M 0. + Mặt phẳng A BC chia khối lăng trụ ABC A B C thành các khối đa diện nào? A. Một khối chóp tam giác và một khối chóp ngũ giác. B. Hai khối chóp tam giác. C. Hai khối chóp tứ giác. D. Một khối chóp tam giác và một khối chóp tứ giác. + Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng 1. Mặt bên SBC là tam giác nhọn và nằm trong mặt phẳng vuông góc với đáy. Các mặt phẳng SAB SAC lần lượt tạo với đáy các góc 0 60 và 0 30. Gọi là góc giữa hai mặt phẳng SAB và SAC. Tính sin. + Cho hình chóp S ABC có thể tích là V. Gọi M là điểm thuộc cạnh AB sao cho AM x AB. Mặt phẳng qua M và song song với hai đường thẳng SA BC. Mặt phẳng chia hình chóp thành hai phần, trong đó phần chứa điểm B có thể tích là V. Biết 208 343 V V. Tính tổng các giá trị của x thỏa mãn bài toán.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử TN THPT 2024 lần 1 môn Toán trường THPT Yên Châu - Sơn La
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2023 – 2024 lần 1 môn Toán trường THPT Yên Châu, tỉnh Sơn La; đề thi có đáp án trắc nghiệm mã đề 000 101 102 103 104 105 106 107 108 và lời giải chi tiết các bài toán vận dụng cao. Trích dẫn Đề thi thử TN THPT 2024 lần 1 môn Toán trường THPT Yên Châu – Sơn La : + Cho hàm số bậc hai y fx có đồ thị (P) và đường thẳng d cắt (P) tại hai điểm như trong hình vẽ bên. Biết rằng hình phẳng giới hạn bởi (P) và d có diện tích 125 9 S. Tích phân 6 1 25 d x f bằng? + Cho khối lăng trụ ABC A B C có AC′ = 8, diện tích của tam giác ABC bằng 9 và đường thẳng AC′ tạo với mặt phẳng (ABC) một góc 60°. Thể tích của khối lăng trụ đã cho bằng? + Cho hình nón có chiều cao bằng 3. Một mặt phẳng (α) đi qua đỉnh hình nón và cắt hình nón theo một thiết diện là tam giác đều, góc giữa trục của hình nón và mặt phẳng (α) là 45°. Thể tích của hình nón đã cho bằng?
Đề thi thử TN THPT 2024 môn Toán lần 2 sở GDĐT Bạc Liêu
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 môn Toán lần 2 sở Giáo dục và Đào tạo tỉnh Bạc Liêu. Trích dẫn Đề thi thử TN THPT 2024 môn Toán lần 2 sở GD&ĐT Bạc Liêu : + Cho hàm số y = f(x) có đạo hàm liên tục trên R và có đồ thị y = f'(x) như hình vẽ. Đặt g(x) = f(x – m) – 1/2(x – m – 1)2 + 2024 với m là tham số thực. Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số y = g(x) đồng biến trên khoảng (5;6). Tổng tất cả các phần tử trong S bằng? + Trong không gian Oxyz, cho mặt cầu (S): (x – 1)2 + (y – 2)2 + (z – 3)2 = 9 và điểm A(0;0;2). Mặt phẳng (P) đi qua điểm A và cắt khối cầu (S) theo giao tuyến là một hình tròn có diện tích nhỏ nhất. Phương trình mặt phẳng (P) là? + Có bao nhiêu giá trị nguyên dương của tham số m để bất phương trình nghiệm đúng với mọi x?
Đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở GDĐT Lạng Sơn
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở Giáo dục và Đào tạo tỉnh Lạng Sơn; kỳ thi được diễn ra vào thứ Ba ngày 27 tháng 02 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101 102 103 104 105 106 107 108 và lời giải chi tiết các bài toán vận dụng – vận dụng cao. Ma trận Đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở GD&ĐT Lạng Sơn : + Bài toán chỉ sử dụng tổ hợp. + Xác suất của bài toán chọn nhóm. + Giới hạn phân thức có bậc tử bằng bậc mẫu. + Góc giữa cạnh bên với mặt đáy. + KC từ chân đường cao đến mặt xiên trong hình chóp. + Tìm cực trị của hàm số khi biết đồ thị hàm số. + Tìm cực trị của hàm số khi biết BBT. + Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước. + Tìm số điểm cực trị của hàm số |f(u)| khi biết đồ thị, BBT f’(x). + Tìm tiệm cận f(x) dựa vào BBT f(x). + Tìm đường tiệm cận, số đường TC của hs. + Nhận dạng BBT hàm số bậc 3. + Tìm tọa độ giao điểm của đồ thị hai hs khi biết f(x) và g(x). + Tìm số nghiệm của pt f(x) = a khi biết đồ thị, BBT f(x). + Tập xác định của hàm số lũy thừa có số mũ hữu tỷ. + Dùng công thức biến đổi cơ số logarit rút gọn biểu thức. + Tính đạo hàm của hàm số logarit. + Tìm Min, Max của biểu thức khi có đk f(u) = f(v) chứa logarit. + Tìm số giá trị nguyên của y để PT Loga có nghiệm thỏa mãn đk bằng PP đánh giá. + GBPT Mũ cơ bản. + GBPT Logarit cơ bản. + GBPT Loga dạng tích. + Nguyên hàm cơ bản của hàm số đa thức. + Nguyên hàm cơ bản của hàm lượng giác. + Định nghĩa của tích phân. + Tính chất của tích phân. + Tích phân của hàm ẩn bằng PP từng phần. + Tích phân của hàm ẩn bằng tạo ra công thức đạo hàm tích, thương. + Biết f’(x), tính tích phân f(x). + Ý nghĩa hình học của tích phân. + Tìm khoảng đơn điệu của hàm số khi biết f’(x), BXD f’(x). + Xét tính đơn điệu của hàm số f(x) khi biết đồ thị, BBT f’(x). + Áp dụng công thức tính thể tích khối chóp. + Áp dụng công thức tính thể tích khối lăng trụ. + Tính chiều cao, khoảng cách bằng thể tích. + Thể tích khối lăng trụ đứng có góc giữa hai mp. + Tính V, Sxq hoặc Stp khi biết R, h, l. + Tính Sxq hoặc Stp khi biết R và h. + Tính V, S khi biết R. + Bài toán kết hợp hình cầu với hình trụ. + Xác định tọa độ vectơ qua phép cộng, trừ vectơ. + Tính độ dài đoạn thẳng khi biết hai đầu mút, độ dài vectơ. + Xác định tọa độ tâm, R, S, V của MC khi biết PTMC. + Viết PTMC khi biết tâm và đi qua 1 điểm. + Nhận diện phương trình mặt cầu. + Xác định VTPT khi biết PTMP. + Nhận diện điểm thuộc MP. + Viết PTMP trung trực của đoạn thẳng. + Tính KC từ điểm đến MP. + Viết PTMP chắn hai đoạn theo tỉ số.
Đề thi tháng lần 2 Toán 12 năm 2023 - 2024 trường THPT Ngô Sĩ Liên - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi tháng lần 2 môn Toán 12 năm học 2023 – 2024 trường THPT Ngô Sĩ Liên, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101. Trích dẫn Đề thi tháng lần 2 Toán 12 năm 2023 – 2024 trường THPT Ngô Sĩ Liên – Bắc Giang : + Trong không gian Oxyz cho tứ diện ABCD có A B C D. Trên các cạnh AB AC AD lần lượt lấy các điểm BCD sao cho 4 AB AC AD AB AC AD. Viết phương trình mặt phẳng BCD biết tứ diện A B C D có thể tích nhỏ nhất. + Một khối trụ có đường cao bằng 5, chu vi của thiết diện qua trục gấp 3 lần đường kính đáy. Thể tích của khối trụ bằng? + Cho hàm số 4 2 fx 32 4. Có bao nhiêu giá trị nguyên của tham số m sao cho ứng với mỗi m tổng giá trị các nghiệm phân biệt thuộc khoảng (−4;1) của phương trình 2 fx m 4 5 bằng -8?