Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Trắc nghiệm VD - VDC số phức - Đặng Việt Đông

Với mục đích hỗ trợ các em học sinh khối 12 trong quá trình học tập nâng cao các dạng toán trong chương trình Giải tích 12 chương 4 – số phức, ôn tập hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, thầy Đặng Việt Đông biên soạn cuốn tài liệu trắc nghiệm vận dụng – vận dụng cao chuyên đề số phức. Tài liệu trắc nghiệm VD – VDC số phức – Đặng Việt Đông gồm 108 trang với các bài tập trắc nghiệm số phức ở mức độ vận dụng và vận dụng cao, được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường, sở GD&ĐT, đề tham khảo – đề minh họa – đề chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo, các bài tập về số phức được phân tách thành các dạng toán cụ thể, có đáp án và lời giải chi tiết. [ads] Các dạng toán được đề cập trong tài liệu trắc nghiệm VD – VDC số phức – Đặng Việt Đông: A – LÝ THUYẾT CHUNG 1. Số phức. 2. Phép cộng trừ nhân chia số phức. 3. Tập hợp điểm biểu diễn số phức. 4. Phương trình bậc hai với hệ số thực. 5. Bài toán liên quan đến max – min mô đun số phức. B – BÀI TẬP TRẮC NGHIỆM Dạng 1. Tính toán và các yếu tố trên số phức. Dạng 2. Phương trình, hệ phương trình trên số phức. Dạng 3. Tìm tập hợp điểm, biểu diễn số phức. + Điểm biểu diễn. + Tập hợp điểm biểu diễn là đường thẳng. + Tập hợp điểm biểu diễn là đường tròn. + Tập hợp điểm biểu diễn là hình tròn. + Tập hợp điểm biểu diễn là đường cônic. + Tập hợp điểm biểu diễn là đường cong. + Tập hợp điểm biểu diễn liên quan đa giác. Dạng 4. Số phức có mođun nhỏ nhất, lớn nhất. + Mođun min, max của số phức có tập hợp biểu diễn là đường đường thẳng. + Mođun min, max của số phức có tập hợp biểu diễn là đường tròn, hình tròn. + Mođun min, max của số phức có tập hợp biểu diễn là elip. Dạng 5. Min, max số phức phương pháp đại số. + Áp dụng các tính chất bất đẳng thức, đánh giá. + Áp dụng các bất đẳng thức bunhiacopxki. + Áp dụng phương pháp hàm số. Dạng 6. Min, max số phức phương pháp hình học. Xem thêm : + Trắc nghiệm VD – VDC hàm số – Đặng Việt Đông + Trắc nghiệm VD – VDC mũ – logarit – Đặng Việt Đông + Trắc nghiệm VD – VDC nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm phương trình phức
Tài liệu gồm 19 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương trình phức, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 4. 1. Căn bậc hai của số phức. 2. Phương trình phức. 3. Tìm căn bậc hai của số phức z a bi a b. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm các phép tính toán với số phức
Tài liệu gồm 33 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề các phép tính toán với số phức, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 4. A. LÝ THUYẾT TRỌNG TÂM 1) Các khái niệm cơ bản. 2) Biểu diễn hình học của số phức. 3) Phép cộng và phép trừ số phức. 4) Số phức liên hợp và môđun của số phức. 5) Phép chia cho số phức khác 0. 6) Một số các kết quả quan trọng. B. PHƯƠNG PHÁP GIẢI TOÁN + Dạng 1: Tính toán cơ bản với số phức. + Dạng 2: Bài toán quy về giải hệ phương trình nghiệm thực. + Dạng 3: Lấy môđun hai vế tìm số phức. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Số phức trong đề thi THPT môn Toán (2017 - 2020)
Tài liệu gồm 13 trang, tuyển chọn 135 câu hỏi và bài tập trắc nghiệm chuyên đề số phức có đáp án, được trích từ các đề thi tốt nghiệp THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2019 – 2020. Tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4 (số phức) và ôn thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Xem thêm : Đề thi THPT Quốc gia môn Toán từ năm 2017 đến năm 2020
Số phức trong các đề thi thử THPT Quốc gia môn Toán
Tài liệu gồm 541 trang được sưu tầm và biên soạn bởi thầy giáo Th.S Nguyễn Chín Em, tuyển tập các câu hỏi và bài tập trắc nghiệm chuyên đề số phức có đáp án và lời giải chi tiết trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây; giúp các em học sinh khối 12 học tốt chương trình Giải tích 12 chương 4 (số phức) và ôn thi THPT Quốc gia môn Toán. Trích dẫn tài liệu số phức trong các đề thi thử THPT QG môn Toán: + Xét các số phức z thỏa mãn (z + 2i)(z‾ + 2) là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là? + Gọi S là tập hợp các số phức thỏa mãn |z − 1| = √34 và |z + 1 + mi| = |z + m + 2i|, trong đó m ∈ R. Gọi z1, z2 là hai số phức thuộc S sao cho |z1 − z2| lớn nhất, khi đó giá trị của |z1 + z2| bằng? [ads] + Cho số phức z thỏa mãn |z − 1| = |z − 2 + 3i|. Tập hợp các điểm biểu diễn số phức z là? A. Đường tròn tâm I(1; 2), bán kính R = 1. B. Đường thẳng có phương trình 2x − 6y + 12 = 0. C. Đường thẳng có phương trình x − 3y − 6 = 0. D. Đường thẳng có phương trình x − 5y − 6 = 0. + Cho các mệnh đề: (I) Số phức z = 2i là số thuần ảo. (II) Nếu số phức z có phần thực là a, số phức z0 có phần thực là a0 thì số phức z · z0 có phần thực là a·a0. (III) Tích của hai số phức z = a + bi (a, b ∈ R) và z0 = a0 + b0i (a, b ∈ R) là số phức có phần ảo là ab0 + a0b. Số mệnh đề đúng trong ba mệnh đề trên là? + Trong mặt phẳng tọa độ Oxy, gọi M, N, P lần lượt là các điểm biểu diễn các số phức z1 = 1 + i, z2 = 8 + i, z3 = 1 − 3i. Khẳng định nào sau đây là một mệnh đề đúng? A. Tam giác MNP cân, không vuông. B. Tam giác MNP đều. C. Tam giác MNP vuông, không cân. D. Tam giác MNP vuông cân.