Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng A)

Sáng ngày 04 tháng 12 năm 2018, sở Giáo dục và Đào tạo tỉnh Quảng Ninh đã tổ chức kỳ thi học sinh giỏi môn Toán cấp tỉnh dành cho khối THPT năm học 2018 – 2019. Đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng A) gồm 1 trang với 6 bài toán tự luận, thí sinh có 180 phút để làm bài thi (không tính thời gian phát đề). Trích dẫn đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng A) : + Trong cuộc thi văn nghệ do Đoàn thanh niên trường THPT X, tỉnh Quảng Ninh tổ chức vào tháng 11 năm 2018 với thể lệ mỗi lớp tham gia một tiết mục. Kết quả có 12 tiết mục đạt giải trong đó: có 4 tiết mục khối 12, có 5 tiết mục khối 11 và 3 tiết mục khối 10. Ban tổ chức chọn ngẫu nhiên 5 tiết mục biểu diễn chào mừng ngày 20 tháng 11 (không tính thứ tự biểu diễn). Tính xác suất sao cho khối nào cũng có tiết mục được biểu diễn và trong đó có ít nhất hai tiết mục của khối 12. [ads] + Nhà bạn An muốn đặt thợ làm một bể cá, nguyên liệu bằng kính trong suốt, không có nắp đậy dạng hình hộp chữ nhật có thể tích chứa được 400000 (cm) nước. Biết rằng chiều cao của bể gấp 2 lần chiều rộng của bể. Xác định diện tích đáy của bể cá để tiết kiệm nguyên vật liệu nhất. + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có 3 góc đều nhọn. Gọi H là trực tâm của tam giác ABC; M, N, P lần lượt là giao điểm của AH, BH, CH với đường tròn ngoại tiếp tam giác ABC. Tìm tọa độ trực tâm H của tam giác ABC.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 12 năm 2019 sở GDĐT TP Hồ Chí Minh
giới thiệu đến bạn đọc nội dung đề thi học sinh giỏi Toán 12 năm 2019 sở GD&ĐT TP Hồ Chí Minh, kỳ thi vừa được diễn ra vào sáng nay (thứ Ba ngày 05 tháng 03 năm 2019), đề thi được biên soạn theo hình thức tự luận với 5 bài toán, thời gian làm bài thi Toán là 120 phút (không kể thời gian giám thị coi thi phát đề). Thông qua kỳ thi chọn HSG Toán 12 này, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh (TP. HCM) sẽ tuyển chọn được các em học sinh khối 12 giỏi môn Toán đang sinh sống và học tập trên địa bàn thành phố HCM, qua đó thành lập đội tuyển HSG Toán 12 tham dự kỳ thi HSG Toán THPT cấp Quốc gia năm 2019, ngoài ra, các em đạt giải trong kỳ thi lần này còn được tuyên dương, khen thưởng để làm tấm gương học tập cho các em học sinh khác. [ads] Trích dẫn đề thi học sinh giỏi Toán 12 năm 2019 sở GD&ĐT TP Hồ Chí Minh : + Cho hàm số y = (x^2 – 1)^2 có đồ thị (C). Xét điểm M di chuyển trên (C) và có hoành độ m thuộc (-1;1). Tiếp tuyến của (C) ở M cắt (C) tại hai điểm A, B phân biệt và khác M. Tìm giá trị lớn nhất của từng độ trung điểm I của đoạn thẳng AB. + Cho hình lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác vuông cân ở A với BC = 2a và hình chiếu của A’ lên mặt phẳng (ABC) trùng với trung điểm BC. Biết rằng diện tích của tứ giác BCC’B’ bằng 6a^2. a) Tính theo a thể tích của hình lăng trụ đã cho. b) Tính theo a thể tích của hình trụ nhỏ nhất có hai đáy lần lượt nằm trên hai mặt phẳng (ABC), (A’B’C’) và chứa toàn bộ lăng trụ đã cho bên trong. + Cho các số thực a, b, c < (1;+∞) thỏa mãn a^10 ≤ b và log_a b + 2log_b c + 5log_c a = 12. Tìm giá trị nhỏ nhất của biểu thức P = 2log_a c + 5log_b c + 10log_b a.
Đề thi HSG Toán 12 cấp trường năm 2018 2019 trường Thuận Thành 2 Bắc Ninh
Nhằm tuyển chọn các em học sinh khối lớp 12 giỏi môn Toán để thành lập đội tuyển học sinh giỏi Toán 12 THPT, trường THPT Thuận Thành 2, tỉnh Bắc Ninh tiến hành tổ chức kỳ thi chọn học sinh giỏi Toán 12 THPT năm học 2018 – 2019. Các em học sinh đạt điểm số cao trong kỳ thi lần này sẽ được tuyên dương trước toàn trường để làm tấm gương học tập cho các học sinh khác, đồng thời được tiếp tục bồi dưỡng, tham dự kỳ thi học sinh giỏi Toán cấp tỉnh. Đề thi HSG Toán 12 cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, đề gồm 07 trang, học sinh làm bài thi trong 90 phút, đề thi có đáp án. [ads] Trích dẫn đề thi HSG Toán 12 cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh : + Một chiếc ô tô mới mua năm 2016 với giá 800 triệu đồng. Cứ sau mỗi năm, giá chiếc ô tô này bị giảm 5%. Hỏi đến năm 2020, giá tiền chiếc ô tô này còn khoảng bao nhiêu? A. 651.605.000 đồng. B. 685.900.000 đồng. C. 619.024.000 đồng. D. 760.000.000 đồng. + Một bàn dài có hai dãy ghế đối diện nhau, mỗi dãy có 5 ghế. Người ta muốn xếp chỗ ngồi cho 5 học sinh trường THPT Thuận Thành 1 (Bắc Ninh) và 5 học sinh trường THPT Thuận Thành 2 (Bắc Ninh) vào bàn nói trên. Tính xác suất để bất cứ 2 học sinh nào ngồi đối diện nhau thì khác trường với nhau. + Cho hình nón (N) có bán kính đáy bằng 6 và chiều cao bằng 12. Mặt cầu (S) ngoại tiếp hình nón (N) có tâm là I. Một điểm M di động trên mặt đáy của nón (N) và cách I một đoạn bằng 6. Quỹ tích tất cả các điểm M tạo thành đường cong có tổng có độ dài bằng?
Đề thi HSG Toán 12 năm 2018 - 2019 cụm trường THPT huyện Yên Dũng - Bắc Giang
Đề thi HSG Toán 12 năm 2018 – 2019 cụm trường THPT huyện Yên Dũng – Bắc Giang mã đề 121, đề được biên soạn theo hình thức trắc nghiệm kết hợp tự luận, phần trắc nghiệm gồm 40 câu, chiếm 40% số điểm, phần tự luận gồm 03 câu, chiếm 60% số điểm, học sinh làm bài thi trong 120 phút. Trích dẫn đề thi HSG Toán 12 năm 2018 – 2019 cụm trường THPT huyện Yên Dũng – Bắc Giang : + Một trường THPT tại huyện Yên Dũng – Bắc Giang có 18 học sinh đạt giải học sinh giỏi cấp tỉnh, trong đó có 11 học sinh nam và 7 học sinh nữ. Chọn ngẫu nhiên 6 học sinh trong số các học sinh trên đi tham quan học tập tại Hà Nội. Tính xác suất để có ít nhất một học sinh nam và một học sinh nữ được chọn. [ads] + Cho dãy số (un) được xác định bởi: u1 = 2, un = 2un-1 + 3n – 1. Công thức số hạng tổng quát của dãy số đã cho là biểu thức có dạng a2^n + bn + c, với a, b, c là các số nguyên, n ≥ 2; n thuộc N. Khi đó tổng a + b + c có giá trị bằng? + Gọi S là tập hợp các số tự nhiên có 3 chữ số được lập từ tập X = {0; 1; 2; 3; 4; 5; 6; 7}.Rút ngẫu nhiên một số thuộc tập S. Tính xác suất để rút được số mà trong số đó chữ số đứng sau luôn lớn hơn hoặc bằng chữ số đứng trước.
Đề thi chọn HSG Toán 12 chuyên năm học 2018 - 2019 sở GDĐT Đồng Nai
Đề thi chọn HSG Toán 12 chuyên năm học 2018 – 2019 sở GD&ĐT Đồng Nai gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút, kỳ thi được tổ chức ngày 18 tháng 01 năm 2019 nhằm tuyển chọn các em học sinh giỏi Toán đang theo học hệ chương trình chuyên tại tỉnh Đồng Nai để tuyên dương, khen thưởng, đồng thời thành lập đội tuyển học sinh giỏi tỉnh Đồng Nai tham dự kỳ thi học sinh giỏi Toán chuyên cấp Quốc gia. Trích dẫn đề thi chọn HSG Toán 12 chuyên năm học 2018 – 2019 sở GD&ĐT Đồng Nai : + Cho m, n là các số tự nhiên thỏa mãn 4m^3 + m = 12n^3 + n. Chứng minh rằng m – n là lập phương của một số nguyên. [ads] + Cho tam giác ABC nội tiếp đường tròn (O) có trực tâm H, K là trung điểm BC và G là hình chiếu vuông góc của H trên AK. Lấy D đối xứng G qua BC và I đối xứng C qua D. Tia phân giác góc ACB cắt AB tại F và tia phân giác góc BID cắt BD ở M, MF cắt AC tại E. 1) Chứng minh rằng D nằm trên đường tròn (O). 2) Tiếp tuyến tại A của (O) cắt BC ở X, XE cắt đường tròn ngoại tiếp tam giác EBM ở điểm thứ hai là Y. Chứng minh rằng đường tròn ngoại tiếp tam giác EYD tiếp xúc đường tròn (O).