Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lần 1 lớp 11 môn Toán năm 2019 2020 trường Thanh Miện Hải Dương

Nội dung Đề thi KSCL lần 1 lớp 11 môn Toán năm 2019 2020 trường Thanh Miện Hải Dương Bản PDF Chủ Nhật ngày 10 tháng 11 năm 2019, trường THPT Thanh Miện, tỉnh Hải Dương tổ chức kỳ thi khảo sát chất lượng lần 1 môn Toán lớp 11 năm học 2019 – 2020, nhằm kiểm tra kiến thức Toán lớp 11 định kỳ. Đề thi KSCL lần 1 Toán lớp 11 năm học 2019 – 2020 trường THPT Thanh Miện – Hải Dương có mã đề 131, đề gồm 05 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan, thời gian làm bài 90 phút (không kể thời gian giao đề), đề thi có đáp án. Trích dẫn đề thi KSCL lần 1 Toán lớp 11 năm 2019 – 2020 trường Thanh Miện – Hải Dương : + Một trường đại học tổ chức thi vấn đáp tiếng anh cho sinh viên của trường. Có 15 đề thi vấn đáp, trong đó 6 đề có nội dung về giáo dục, 4 đề có nội dung về kinh tế và 5 đề có nội dung về thể thao. Một sinh viên rút thăm bất kỳ một đề để trả lời. Tìm xác suất để sinh viên đó rút được đề có nội dung về giáo dục? + Cho hai đường thẳng song song a và b. Trên đường thẳng a lấy 6 điểm phân biệt. Trên đường thẳng b lấy 5 điểm phân biệt. Chọn ngẫu nhiên 3 điểm. Xác xuất để ba điểm được chọn tạo thành một tam giác là? [ads] + Cho tập A có n phần tử (n ∈ N*), điều nào sau đây là sai? A. Số các chỉnh hợp chập k của n phần tử là nAk = n!/(n – k)! với k ≤ n, k thuộc N*. B. Số các tổ hợp chập k của n phần tử là nCk = n!/k!(n – k)! với k ≤ n, k thuộc N. C. Số các hoán vị của (n + 1) phần tử là 1.2.3…(n – 2)(n – 1)n. D. Mỗi hoán vị của n phần tử cũng chính là một chỉnh hợp chập n của n phần tử. Vì vậy Pn = nAn. + Trường THPT Thanh Miện, tỉnh Hải Dương có 15 học sinh giỏi gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh? + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1;6), B(-1;-4). Gọi C, D lần lượt là ảnh của A và B qua phép tịnh tiến theo vectơ v = (1;5). Tìm khẳng định đúng: A. ABCD là hình thoi. B. ABCD là hình bình hành. C. Bốn điểm A, B, C, D thẳng hàng. D. ABCD là hình thang. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát lớp 11 môn Toán lần 1 năm 2019 2020 trường Thuận Thành 1 Bắc Ninh
Nội dung Đề khảo sát lớp 11 môn Toán lần 1 năm 2019 2020 trường Thuận Thành 1 Bắc Ninh Bản PDF Ngày … tháng 01 năm 2020, trường THPT Thuận Thành số 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng lần 1 môn Toán lớp 11 năm học 2019 – 2020. Đề khảo sát Toán lớp 11 lần 1 năm 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh mã đề 132 gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 132, 209, 357, 485. Trích dẫn đề khảo sát Toán lớp 11 lần 1 năm 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh : + Để trang trí cho quán trà sữa sắp mở cửa của mình, bạn Giang quyết định tô màu một mảng tường hình vuông cạnh bằng 2m. Phần tô màu dự kiến là các hình vuông nhỏ được đánh số lần lượt là 1, 2, 3 ….. n (các hình vuông được tô màu chấm bi), trong đó cạnh của hình vuông kế tiếp bằng một nửa cạnh hình vuông trước đó (hình vẽ). Giả sử quá trình tô màu của Giang có thể diễn ra nhiều giờ. Hỏi bạn Giang tô màu đến hình vuông thứ mấy thì diện tích của hình vuông được tô bắt đầu nhỏ hơn. + Công ty A chuyên sản xuất một loại sản phẩm, bộ phận sản xuất ước tính rằng với q sản phẩm được sản xuất một tháng thì tổng chi phí sẽ là C(q) = 3q^2 + 64q – 9999 (đơn vị tiền tệ). Giá của mỗi sản phẩm được công ty bán với giá R(q) = 160 – 3q. Hãy xác định số sản phẩm công ty A cần sản xuất trong một tháng (giả sử công ty này bán hết được số sản phẩm mình làm ra) để thu về lợi nhuận cao nhất? [ads] + Trường THPT Thuận Thành 1, tỉnh Bắc Ninh tổ chức trao thưởng cho học sinh nghèo vượt khó. Trường chuẩn bị các phần thưởng là 11 quyển sổ, 10 cặp sách và 9 hộp bút (các sản phẩm cùng loại và giống nhau). Nhà trường chọn 15 học sinh để trao phần thưởng sao cho mỗi học sinh đều nhận được hai phần thưởng khác loại, trong số đó có bạn An và Bình. Tính xác suất để An và Bình nhận được phần thưởng giống nhau. + Cho tứ diện ABCD, gọi E, F lần lượt là trung điểm của AB, CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mặt phẳng ACD là? A. Giao điểm của đường thẳng EG và CD. B. Giao điểm của đường thẳng EG và AC. C. Giao điểm của đường thẳng EG và AF. D. Điểm F. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G1, G2 lần lượt là trọng tâm của các tam giác SAB và SAD. Khi đó đường thẳng G1G2? A. cắt mặt phẳng (ABCD). B. song song với mặt phẳng (SCD). C. song song với mặt phẳng (SBC). D. song song với mặt phẳng (ABCD).
Đề khảo sát lần 2 lớp 11 môn Toán năm 2019 2020 trường Nguyễn Đăng Đạo Bắc Ninh
Nội dung Đề khảo sát lần 2 lớp 11 môn Toán năm 2019 2020 trường Nguyễn Đăng Đạo Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 11 đề khảo sát lần 2 Toán lớp 11 năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh, đề có mã đề 178 gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, kỳ thi nhằm kiểm tra chất lượng Toán lớp 11 thường xuyên trong giai đoạn đầu học kỳ 2 năm học 2019 – 2020. Trích dẫn đề khảo sát lần 2 Toán lớp 11 năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh : + Mệnh đề nào sau đây là đúng? A. Qua điểm A và đường thẳng d xác định duy nhất một mặt phẳng. B. Nếu hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất. C. Qua ba điểm phân biệt xác định duy nhất một mặt phẳng. D. Nếu trên đường thẳng d có hai điểm phân biệt thuộc mp(α) thì mọi điểm trên d đều thuộc mp(α). + Trong các mệnh đề sau, mệnh đề nào Sai? A. Phép tịnh tiến biến một đường thẳng thành một đường thẳng song song với nó. B. Phép tịnh tiến biến một tam giác thành một tam giác đồng dạng với nó. C. Phép tịnh tiến biến một đoạn thẳng thành một đoạn thẳng bằng nó. D. Phép tịnh tiến biến một đường tròn thành một đường tròn có cùng chu vi với nó. [ads] + Từ các chữ số 0, 1, 2, 3, 4 lập các số tự nhiên có 4 chữ số khác nhau. Tính xác suất để số lập được có đúng 2 chữ số chẵn và 2 chữ số lẻ, đồng thời 2 chữ số đứng cạnh nhau thì không cùng tính chẵn, lẻ. + Cho tứ diện đều ABCD cạnh bằng 1. Gọi E là trung điểm BD; M là điểm thuộc cạnh BC sao cho BM = x (0 < x < 1). Mặt phẳng (α) qua M, song song với 2 đường thẳng AB và CE. (α) cắt các đoạn BD, AE, AC lần lượt tại N, P, Q. Tìm giá trị nhỏ nhất của biểu thức T = MP^2 + NQ^2. + Cho hình vuông ABCD cạnh a tâm O tập hợp điểm M sao cho MA.MC + MB.MD = a^2 là: A. Đường tròn tâm O, bán kính R = a. B. Đường tròn tâm O, bán kính R = a/√2. C. Đường tròn tâm O, bán kính R = a√2. D. Đường tròn tâm O, bán kính R = 2a. File WORD (dành cho quý thầy, cô):
Đề khảo sát tháng 12/2019 lớp 11 môn Toán trường THPT Trần Phú Vĩnh Phúc
Đề kiểm tra định kỳ lần 2 lớp 11 môn Toán năm 2019 2020 trường chuyên Bắc Ninh
Nội dung Đề kiểm tra định kỳ lần 2 lớp 11 môn Toán năm 2019 2020 trường chuyên Bắc Ninh Bản PDF Ngày … tháng 12 năm 2019, trường THPT chuyên Bắc Ninh, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng định kỳ lần thứ hai môn Toán lớp 11 năm học 2019 – 2020. Đề kiểm tra định kỳ lần 2 Toán lớp 11 năm 2019 – 2020 trường chuyên Bắc Ninh được biên soạn theo hình thức trắc nghiệm, đề gồm 04 trang với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút, đề thi có đáp án. Trích dẫn đề kiểm tra định kỳ lần 2 Toán lớp 11 năm 2019 – 2020 trường chuyên Bắc Ninh : + Cho X là tập hợp các số tự nhiên có 5 chữ số và đôi một khác nhau tạo nên từ các chữ số 0; 1; 3; 4; 5; 7; 8; 9. Lấy ngẫu nhiên một số từ tập X. Tính xác suất để số lấy được có chữ số đầu tiên không nhỏ hơn 5 (chữ số đầu tiên là chữ số hàng chục nghìn). + Trong mặt phẳng cho điểm O đường thẳng d không đi qua điểm O. Trong các mệnh đề sau, mệnh đề nào đúng? A. Phép quay tâm O biến d thành đường thẳng d’ cắt d tại một điểm duy nhất O. B. Phép tịnh tiến biến d thành đường thẳng d’ song song với d. C. Phép đối xứng tâm O biến d thành đường thẳng d’ song song hoặc trùng với d. D. Phép vị tự tâm O tỉ số k (k ≠ 0) biến d thành đường thẳng d’ song song hoặc trùng với d. [ads] + Trò chơi quay bánh xe số trong chương trình truyền hình “Hãy chọn giá đúng” của kênh VTV3 Đài truyền hình Việt Nam, bánh xe số có 20 nấc điểm: 5, 10, 15 … 100 với vạch chia đều nhau và giả sử rằng khả năng chuyển từ nấc điểm đã có tới các nấc điểm còn lại là như nhau. Trong mỗi lượt chơi có 2 người tham gia, mỗi người được quyền chọn quay 1 lần hoặc 2 lần nếu điểm ở lần quay đầu chưa thắng, và điểm số của người chơi được tính như sau: Nếu người chơi chọn quay 1 lần thì điểm của người chơi là điểm quay được. Nếu người chơi chọn quay 2 lần và tổng điểm quay được không lớn hơn 100 thì điểm của người chơi là tổng điểm quay được. Nếu người chơi chọn quay 2 lần và tổng điểm quay được lớn hơn 100 thì điểm của người chơi là tổng điểm quay được trừ đi 100. Luật chơi quy định, trong mỗi lượt chơi người nào có điểm số cao hơn sẽ thắng cuộc, hòa nhau sẽ chơi lại lượt khác. An và Bình cùng tham gia một lượt chơi, An chơi trước và có điểm số là 75. Tính xác suất để Bình thắng cuộc ngay ở lượt chơi này. File WORD (dành cho quý thầy, cô):