Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào chuyên môn Toán năm 2022 2023 sở GD ĐT Bình Dương

Nội dung Đề tuyển sinh vào chuyên môn Toán năm 2022 2023 sở GD ĐT Bình Dương Bản PDF - Nội dung bài viết Thông báo: Đề tuyển sinh vào chuyên môn Toán năm 2022 2023 sở GD ĐT Bình Dương Thông báo: Đề tuyển sinh vào chuyên môn Toán năm 2022 2023 sở GD ĐT Bình Dương Chào đón quý thầy cô giáo và các em học sinh lớp 9! Sytu xin giới thiệu đến quý vị đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Bình Dương. Kỳ thi sẽ diễn ra vào thứ Sáu, ngày 03 tháng 06 năm 2022. Dưới đây là một số câu hỏi trong đề tuyển sinh: Cho phương trình \(x^2 - 2mx + m - 2 = 0\) (trong đó \(m\) là tham số). a) Tìm tất cả các giá trị \(m\) để phương trình có hai nghiệm phân biệt dương. b) Gọi \(x_1\) và \(x_2\) là các nghiệm của phương trình. Hãy tìm \(m\) sao cho biểu thức \(M\) đạt giá trị nhỏ nhất. Chứng minh rằng: \(A = a^7 - a\) chia hết cho 7 với mọi \(a \in \mathbb{Z}\). Cho tam giác nhọn \(ABC\) (với \(AB < AC\)) nội tiếp đường tròn \((O)\) và \(M\) là trung điểm của \(BC\). \(BE\) và \(CF\) lần lượt là các đường cao (với \(E\) và \(F\) là chân các đường cao). Tiếp tuyến với đường tròn \((O)\) tại \(B\) và \(C\) cắt nhau tại \(S\). Gọi \(N\) và \(P\) lần lượt là giao điểm của \(BS\) với \(EF\) và \(AS\) với \((O)\) (\(P\) khác \(A\)). Chứng minh rằng: a) \(MN\) vuông góc \(BF\). b) \(AB \cdot CP = AC \cdot BP\). c) \(\angle CAM = \angle BAP\). Chúc quý thầy cô và các em học sinh thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 môn Toán năm 2020 - 2021 trường chuyên Hoàng Văn Thụ - Hòa Bình (đề chuyên)
Đề thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021 trường THPT chuyên Hoàng Văn Thụ – Hòa Bình (đề dành cho học sinh thi vào các lớp chuyên Toán) gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không tính thời gian phát đề). Trích dẫn đề thi vào 10 môn Toán năm 2020 – 2021 trường chuyên Hoàng Văn Thụ – Hòa Bình (đề chuyên) : + Cho tam giác ABC nội tiếp đường tròn (O). Tia phân giác của góc A cắt đường tròn (O) tại D. Chứng minh rằng AB + AC < 2AD. + Một ca nô xuôi dòng trên một khúc sông từ bên A đến bến B dài 96km, sau đó lại ngược dòng đến địa điểm C cách bến B là 100km, thời gian ca nô xuôi dòng ít hơn thời gian ngược dòng là 30 phút. Tính vận tốc riêng của ca nô, biết vận tốc của dòng nước là 4km/h. [ads] + Từ một điểm A nằm ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M (M khác B, M khác C), từ M kẻ MI, MK, MP lần lượt vuông góc với AB, AC, BC (I thuộc 4B, K thuộc AC, P thuộc BC). 1) Chứng minh rằng: MPK = MBC. 2) Chứng minh rằng: Tam giác MIP đồng dạng với tam giác MIK. 3) Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất.
Đề thi thử vào 10 môn Toán năm 2020 - 2021 trường THCS Thành Công - Hà Nội
Thứ Bảy ngày 30 tháng 06 năm 2020, trường THCS Thành Công, quận Ba Đình, thành phố Hà Nội tổ chức kỳ thi thử tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021. Đề thi thử vào 10 môn Toán năm 2020 – 2021 trường THCS Thành Công – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Trích dẫn đề thi thử vào 10 môn Toán năm 2020 – 2021 trường THCS Thành Công – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai đội công nhân cùng làm chung một công việc sau 12 ngày thì hoàn thành. Nếu hai đội làm chung trong 3 ngày, sau đó đội II đi làm việc khác và đội I làm thêm 7 ngày thì được 7/12 công việc. Hỏi mỗi đội làm một mình thì sau bao lâu hoàn thành công việc? [ads] + Một dụng cụ làm bằng thủy tinh dùng để chứa dung dịch có dạng hình nón với độ dài đường sinh là 15 cm và diện tích xung quanh là 135pi cm2. Hãy tính thể tích của dụng cụ đó (bỏ qua bề dày của dụng cụ). + Cho hệ phương trình: x + 2y = 5 và mx + y = 4. Giải hệ phương trình khi m = 3. Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x = |y|.
Đề thi thử vào 10 môn Toán năm 2020 - 2021 trường THCS Khương Thượng - Hà Nội
Thứ Bảy ngày 04 tháng 07 năm 2020, trường THCS Khương Thượng, quận Đống Đa, thành phố Hà Nội tổ chức kỳ thi thử tuyển sinh vào lớp 10 THPT năm học 2020 – 2021 môn Toán. Đề thi thử vào 10 môn Toán năm 2020 – 2021 trường THCS Khương Thượng – Hà Nội được biên soạn bám sát cấu trúc đề tuyển sinh lớp 10 môn Toán của sở GD&ĐT Hà Nội những năm gần đây. Trích dẫn đề thi thử vào 10 môn Toán năm 2020 – 2021 trường THCS Khương Thượng – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, hai tổ sản xuất phải may 3000 bộ quần áo bảo hộ y tế để phục vụ cho công tác phòng chống dịch Covid – 19. Trên thực tế, tổ 1 đã may vượt mức 10%, tổ 2 may vượt mức 12% so với kế hoạch nên cả hai tổ đã may được 3328 bộ quần áo bảo hộ y tế. Hỏi theo kế hoạch mỗi tổ phải may bao nhiêu bộ quần áo bảo hộ y tế? + Một hình nón có chiều cao h = 16cm và bán kính đường tròn đáy r = 12cm. Tính độ dài đường sinh và diện tích xung quanh của hình nón đó (tính với số pi = 3,14 và kết quả làm tròn đến chữ số hàng đơn vị). [ads] + Cho đường tròn (O;R) đường kính AB. Lấy E và D thuộc đường tròn (O;R) (E và D cùng nằm trên 1 nửa mặt phẳng bờ chứa AB và E thuộc cung AD). Đường thẳng AB cắt BD tại C; AD cắt BE tại H; CH cắt AB tại F. 1) Chứng minh tứ giác CDHE nội tiếp. 2) Chứng minh: AE.AC = AF.AB. Trên tia đối của tia FD lấy điểm D sao cho FQ = FE. Tính góc AQB. Gọi M và N lần lượt là hình chiếu của A và B trên đường thẳng DE. Chứng minh: MN = FE + FD.
Đề thi thử vào lớp 10 môn Toán năm 2020 - 2021 trường THCS Xuân Canh - Hà Nội
Thứ Bảy ngày 04 tháng 07 năm 2020, trường THCS Xuân Canh, huyện Đông Anh, thành phố Hà Nội tổ chức kỳ thi thử tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021. Đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 trường THCS Xuân Canh – Hà Nội gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 trường THCS Xuân Canh – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một tổ sản xuất có kế hoạch làm 600 sản phẩm với năng suất dự định. Sau khi làm xong 400 sản phẩm, tổ sản xuất tăng năng suất lao động, mỗi ngày làm thêm được 10 sản phẩm nên hoàn thành sớm hơn kế hoạch 1 ngày. Hỏi theo kế hoạch mỗi ngày tổ sản xuất phải làm bao nhiêu sản phẩm. + Một hộp sửa hình trụ có thể tích là 250 (cm3). Biết rằng đường kính đáy và độ dài trục của hình trụ bằng nhau. Tính diện tích xung quanh của hộp sữa đó. [ads] + Cho đường tròn (O; R) và đường thẳng d không có điểm chung với đường tròn (O). Từ một điểm M bất kỳ trên đường thẳng d, kẻ hai tiếp tuyến MA, MB tới (O) (A và B là các tiếp điểm). Kẻ OH vuông góc với đường thẳng d (H thuộc d). Đường thẳng AB cắt OH và OM lần lượt tại A và I. Tia OM cắt (O) tại E. 1) Chứng minh tứ giác AMHO nội tiếp. 2) Chứng minh OK.OH = OI.OM và E là tâm đường tròn nội tiếp tam giác MAB. 3) Xác định vị trí của M trên d để diện tích tam giác OIK đạt giá trị lớn nhất.