Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Bắc Ninh

Nội dung Đề chọn học sinh giỏi lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh Đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh Ngày 11 tháng 01 năm 2021, phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh đã tổ chức kì thi chọn học sinh giỏi (HSG) cấp thành phố môn Toán lớp 8 năm học 2020 - 2021. Đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh bao gồm 1 trang với 5 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút. Trích dẫn đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh: Tìm dư trong phép chia đa thức f(x) cho x + 1 và x^2 + 1. Tìm các số nguyên x, y thỏa mãn phương trình 5x + 53 = 2xy + 8y^2. Chứng minh một số tính chất của hình vuông ABCD và tam giác BKC. Trên đây là phần đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh. Các bài toán yêu cầu sự tư duy logic, khả năng giải quyết vấn đề và kiến thức sâu rộng về môn Toán. Hãy thử sức và nỗ lực để vượt qua thách thức này!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG huyện Toán 8 năm 2022 - 2023 phòng GDĐT Tam Dương - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tam Dương, tỉnh Vĩnh Phúc; đề thi hình thức 100% tự luận với 09 bài toán, thời gian làm bài 120 phút. Trích dẫn Đề thi HSG huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Tam Dương – Vĩnh Phúc : + Cho a, b, c là độ dài ba cạnh của tam giác ABC thỏa mãn hệ thức a3 + b3 + c3 = 3abc. Hỏi tam giác ABC là tam giác gì? + Hình thang ABCD (AB // CD) có hai đường chéo cắt nhau tại O. Đường thẳng qua O và song song với đáy AB cắt các cạnh bên AD, BC theo thứ tự ở M và N. + Trên tờ giấy kẻ vô hạn các ô vuông và được tô bởi các màu đỏ hoặc xanh thỏa mãn: bất cứ hình chữ nhật nào có kích thước 2×3 thì có đúng hai ô màu đỏ. Hỏi hình chữ nhật có kích thước 2022 x 2023 có bao nhiêu ô màu đỏ.
Đề thi học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Thiệu Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi khảo sát chất lượng học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thiệu Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 02 năm 2023. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Thiệu Hóa – Thanh Hóa : + Cho x, y, z là các số thực dương thỏa mãn: x2 + y2 + z2 + 1/x2 + 1/y2 + 1/z2 = 6. Tính giá trị của biểu thức P = x2021 + y2022 + z2023. + Cho a, b, c là các số nguyên. Chứng minh rằng: a5 + b5 + c5 – (a + b + c) chia hết cho 30. + Cho tứ giác ABCD có B = D = 90° và AB > AD, lấy điểm M trên cạnh AB sao cho AM = AD. Đường thẳng DM cắt BC tại N. Gọi H là hình chiếu của D trên AC, K là hình chiếu của C trên AN. Chứng minh rằng: 1. Chứng minh rằng: AM2 = AH.AC. 2. Chứng minh rằng AHM = AMC và tam giác CDN là tam giác cân. 3. Chứng minh rằng : MHN = MCK.
Đề thi HSG Toán 8 năm 2022 - 2023 trường THCS Cao Xuân Huy - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp trường môn Toán 8 năm học 2022 – 2023 trường THCS Cao Xuân Huy, tỉnh Nghệ An. Trích dẫn Đề thi HSG Toán 8 năm 2022 – 2023 trường THCS Cao Xuân Huy – Nghệ An : + Cho hình vuông ABCD, trên tia đối của tia BA lấy M, trên tia đối của tia CB lấy N sao cho AM = CN a) Chứng minh MDN vuông cân b) Gọi O là giao điểm của 2 đường chéo AC và BD. Gọi K là trung điểm MN. Chứng minh O, C, K thẳng hàng. + Cho tam giác ABC có ba góc nhọn (AB < AC), đường cao AH. Kẻ HD vuông góc với AB (D thuộc AB). Gọi I là trung điểm của AD, trên tia đối của tia BC lấy điểm K sao cho BK = BH. Chứng minh KD vuông góc với HI. + Cho các số nguyên a, b, c, d thỏa mãn: a + b = c + d. Chứng minh a 2 + b 2 + c 2 + d 2 là tổng của ba số chính phương.
Đề thi Olympic Toán 8 năm 2021 - 2022 trường THCS Tây Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2021 – 2022 trường THCS Tây Sơn, quận Hai Bà Trưng, thành phố Hà Nội. Trích dẫn đề thi Olympic Toán 8 năm 2021 – 2022 trường THCS Tây Sơn – Hà Nội : + Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. a) Chứng minh: AC2 = BC.HC. b) Lấy điểm I thuộc AH. Kẻ đường thẳng đi qua B và vuông góc với CI tại K. Chứng minh rằng CH.CB = CI.CK. c) Tia BK cắt tia HA tại D. Chứng minh rằng BHK = BDC. d) Trên tia đối của tia KC lấy điểm M sao cho BM = BA. Chứng minh BMD = 90°. + Cho hai biểu thức a) Tính P = AB. b) Tìm các giá trị nguyên của x để P là số tự nhiên. c) Tìm tất cả các giá trị của m để phương trình P = m có nghiệm dương duy nhất. + Tìm giá trị lớn nhất của biểu thức A = 8 – x4 + 2×2.