Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kì 1 Toán 9 năm 2022 - 2023 trường Quốc tế Canada - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra định kì cuối học kì 1 môn Toán 9 năm học 2022 – 2023 trường TH – THCS – THPT Quốc tế Canada, thành phố Hồ Chí Minh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề cuối kì 1 Toán 9 năm 2022 – 2023 trường Quốc tế Canada – TP HCM : + Cho đường thẳng (d1): y x 2 và đường thẳng (d2): y x 3. a) Vẽ (d1) và (d2) trên cùng một mặt phẳng tọa độ Oxy. b) Tìm tọa độ giao điểm H của (d1) và (d2) bằng phép toán. c) Cho đường thẳng (d3): y m x m (3 2). Tìm m để (d3) đi qua A(2;4). + Hai bạn Mai và Khoa muốn đo chiều cao của một cây xanh, tuy nhiên hai bạn chỉ có một thước dây để sử dụng. Quan sát hình vẽ bên, em hãy giải thích vì sao hai bạn có thể đo được chiều cao của cây. + Cho đường tròn tâm O và điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). a) Chứng minh OA vuông góc với BC. b) Giả sử OB cm AB cm 3 4. Gọi I là trung điểm OA, tính diện tích tam giác BCI.

Nguồn: toanmath.com

Đọc Sách

Đề Thi Học Kỳ 1 Toán 9 Quảng Nam 2018-2019
Đề Thi Học Kỳ 1 Toán 9 Quảng Nam 2017-2018 Có Đáp Án
Đề Cương Trắc Nghiệm Toán 9 HK1 Có Đáp Án
Đề thi học kì 1 Toán 9 năm 2022 - 2023 sở GDĐT Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng cuối học kì 1 môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi học kì 1 Toán 9 năm 2022 – 2023 sở GD&ĐT Thái Bình : + Một chiếc thang có độ dài AB là 4,7m. Cần đặt chân thang cách chân tường một khoảng BC bằng bao nhiêu để nó tạo với mặt đất một góc “an toàn” là 65° (tức là bảo đảm thang không bị đổ khi sử dụng)? (Kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho đường thẳng (d) có phương trình: y = (m + 4)x – m + 6 (với m là tham số) a. Tìm m để đường thẳng (d) đi qua điểm A(−1; 2). b. Chứng minh rằng khi m thay đổi thì đường thẳng (d) luôn đi qua một điểm cố định, tìm tọa độ điểm cố định đó. + Cho đường tròn tâm O bán kính R và điểm A nằm ngoài đường tròn sao cho OA = 2R. Kẻ các tiếp tuyến AM và AN với đường tròn tâm O (với M, N là các tiếp điểm). 1. Chứng minh rằng: OA vuông góc với MN. Tính độ dài đoạn AM theo R. 2. Kẻ đường kính MB của đường tròn tâm O. Chứng minh rằng: NB song song với AO. 3. Gọi H là giao điểm của OA và MN. Chứng minh rằng: OA = 4OH. 4. Lấy điểm C thuộc cung nhỏ MN, qua C kẻ tiếp tuyến với đường tròn, tiếp tuyến này cắt AM và AN lần lượt tại P và Q. Chứng minh rằng: PQ < R3.