Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 lần 1 năm 2024 - 2025 phòng GDĐT Thái Hòa - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo thị xã Thái Hòa, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 lần 1 năm 2024 – 2025 phòng GD&ĐT Thái Hòa – Nghệ An : + Hai lớp 9A và 9B có tổng cộng 95 học sinh. Trong đợt quyên góp vở ủng hộ các bạn học sinh nghèo, bình quân mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 4 quyển. Vì vậy cả hai lớp đã ủng hộ được 330 quyển. Tính số học sinh của mỗi lớp. + Các tia nắng mặt trời tạo với mặt đất một góc xấp xỉ bằng 31° và bóng của một cây trên mặt đất dài 20 m (xem hình vẽ bên). Tính chiều cao của cây (làm tròn kết quả đến mét). + Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Trên cung nhỏ BC lấy điểm D sao cho CD BD tia AD cắt đường tròn (O) tại điểm thứ hai là E. Gọi I là trung điểm của DE và K là giao điểm của BC và DE. 1) Chứng minh ABOI là tứ giác nội tiếp. 2) Chứng minh OIB OAC và AK AI AD AE. 3) Qua D kẻ đường thẳng song song với AB, đường thẳng này cắt BC tại điểm M. Đường thẳng ME lần lượt cắt đường tròn (O) và đường thẳng AB tại các điểm P và N (P khác E). Chứng minh rằng APN ICB.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào thứ Ba ngày 06 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Bình Định : + Trong hệ toạ độ Oxy, cho các đường thẳng (d): y = ax – 4 và (d1): y = -3x + 2. a) Biết đường thẳng (d) đi qua điểm A(-1;5). Tìm a. b) Tìm toạ độ giao điểm của (d1) với trục hoành, trục tung. Tính khoảng cách từ gốc tọa độ O đến đường thẳng (d1). + Trong kì thi tuyển sinh vào lớp 10 THPT, cả hai trường A và B có tổng số 380 thí sinh dự thi. Sau khi có kết quả, số thí sinh trúng tuyển của cả hai trường là 191 thí sinh. Theo thống kê thì trường A có tỉ lệ trúng tuyển là 55% tổng số thí sinh dự thi của trường A, trường B có tỉ lệ trúng tuyển là 45% tổng số thí sinh dự thi của trường B. Hỏi mỗi trường có bao nhiêu thí sinh dự thi? + Cho tam giác nhọn ABC nội tiếp đường tròn (O) có AB < AC, các đường cao BE, CF của tam giác ABC cắt nhau tại H, đường thẳng EF cắt đường thẳng BC tại K. 1. Chứng minh tứ giác BCEF nội tiếp. 2. Chứng minh hai tam giác KBF và KEC đồng dạng, từ đó suy ra KB.KC = KF.KE. 3. Đường thẳng AK cắt lại đường tròn (O) tại G khác A, chứng minh các điểm A, G, F, E, H cùng thuộc một đường tròn.
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Cao Bằng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Cao Bằng; kỳ thi được diễn ra vào sáng thứ Ba ngày 06 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Cao Bằng : + Một mảnh vườn hình chữ nhật có chu vi là 180 m. Nếu tăng chiều rộng mảnh vườn lên thêm 20 m và giảm chiều dài đi 20 m thì diện tích mảnh vườn không thay đổi. Tính chiều dài và chiều rộng mảnh vườn. + Cho tam giác ABC vuông tại A. Biết AC = 8cm; BC = 10cm. a) Tính độ dài cạnh AB. b) Kẻ đường cao AH. Tính độ dài đoạn thẳng HC. + Cho đường tròn (O) đường kính AB, trên đoạn thẳng OB lấy điểm C sao cho C không trùng với O và B. Gọi H là trung điểm của AC, kẻ dây cung DE của đường tròn (O) vuông góc với AC tại H. Gọi K là giao điểm của BD với đường tròn đường kính BC. a) Chứng minh tứ giác DHCK là tứ giác nội tiếp. b) Chứng minh ba điểm E, C, K thẳng hàng.
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 - 2024 sở GDĐT Bình Phước
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Bình Phước; kỳ thi được diễn ra vào 05/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Bình Phước : + Một mảnh vườn hình chữ nhật có diện tích 600m2. Biết rằng nếu tăng chiều dài 10m và giảm chiều rộng 5m thì diện tích không đổi. Tính chiều dài và chiều rộng. + Cho tam giác ABC vuông tại A, đường cao AH. Biết rằng AB = 3cm, C = 30. a) Tính B, AC, AH. b) Trên cạnh BC lấy điểm M sao cho MC = 2MB, tính diện tích tam giác AMC. + Cho đường tròn (O) đường kính AB, lấy điểm C thuộc (O) (C khác A và B), tiếp tuyến của đường tròn (O) tại B cắt AC ở K. Từ K kẻ tiếp tuyến KD với đường tròn (O) (D là tiếp điểm khác B). a) Chứng minh tứ giác BODK nội tiếp. b) Biết OK cắt BD tại I. Chứng minh rằng OI vuông góc BD và KC.KA = KI.KO. c) Gọi E là trung điểm của AC, kẻ đường kính CF của đường tròn (O), FE cắt AI tại H. Chứng minh rằng H là trung điểm của AI.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hải Phòng; kỳ thi được diễn ra vào 05/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hải Phòng : + Cho phương trình: x2 – 2(a + 1)x + a2 – 2a + 1 = 0 (x là ẩn, a là tham số). Chứng minh nếu a là số chính phương thì phương trình đã cho có hai nghiệm cũng là những số chính phương. + Cho tam giác nhọn ABC không cân nội tiếp đường tròn tâm O. Vẽ đường kính AT của đường tròn (O) và lấy điểm P trên đoạn thẳng OT (P khác T). Gọi E và F tương ứng là hình chiếu vuông góc của P trên các đường thẳng AC và AB. Gọi H là hình chiếu vuông góc của A trên cạnh BC. a) Chứng minh OAB = HAC và hai đường thẳng BC, EF song song với nhau. b) Cho AH và EF cắt nhau tại U; điểm Q di động trên đoạn thẳng UE (Q khác U, Q khác E). Đường thẳng vuông góc với AQ tại điểm Q cắt các đường thẳng PE, PF tương ứng tại M, N. Gọi K là tâm đường tròn ngoại tiếp tam giác AMN. Chứng minh bốn điểm A, M, N, P cùng thuộc một đường tròn và OAH = KAQ. c) Kẻ KD vuông góc với BC (D thuộc BC). Chứng minh đường thẳng đi qua điểm D và song song với AQ luôn đi qua một điểm cố định. + Cho 8 điểm phân biệt trên một đường tròn. Đánh số các điểm đó một cách ngẫu nhiên bởi các số 1; 2; …; 8 (hai điểm khác nhau được đánh số bởi hai số khác nhau). Mỗi dây cung nối hai điểm bất kỳ được gán với giá trị tuyệt đối của hiệu các số ở hai đầu mút. Chứng minh rằng luôn tìm được bốn dây cung, đôi một không có điểm chung, sao cho tổng của các số gán với bốn dây cung đó bằng 16.