Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Đồng Nai

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Đồng Nai Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Đồng Nai Đề thi tuyển sinh môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Đồng Nai Đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 của sở GD&ĐT Đồng Nai có đặc điểm nổi bật là gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút. Trích dẫn nội dung các câu hỏi trong đề tuyển sinh môn Toán (chuyên) năm 2020 – 2021: Trong mặt phẳng cho 1889 điểm thỏa mãn với 3 điểm bất kỳ tạo thành 3 đỉnh của một tam giác có diện tích nhỏ hơn 1. Chứng minh trong các điểm đã cho tồn tại 237 điểm cùng nằm bên trong hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1/2. Có bao nhiêu cách bỏ 5 cây bút khác màu gồm xanh, đen, tím, đỏ, hồng vào 5 hộp đựng bút khác màu gồm xanh, đen, tím, đỏ, hồng sao cho mỗi hộp chỉ có một bút và màu bút khác với màu hộp? Cho tam giác nhọn ABC nội tiếp đường tròn (O) có hai đường cao BE, CF cắt nhau tại trực tâm H, biết AB < AC. Chứng minh các điều kiện sau: Tứ giác ALMO nội tiếp đường tròn, và chứng minh LD là tiếp tuyến của (O). MH vuông góc với AK, suy ra KH vuông góc với AM. Ba điểm A, N, D thẳng hàng. Đề thi tuyển sinh này không chỉ đánh giá kiến thức mà còn đòi hỏi sự linh hoạt, logic và khả năng suy luận của thí sinh. Hy vọng các em sẽ tự tin và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh Toán (chuyên) 2022 2023 trường chuyên Lê Quý Đôn BR VT
Nội dung Đề tuyển sinh Toán (chuyên) 2022 2023 trường chuyên Lê Quý Đôn BR VT Bản PDF - Nội dung bài viết Đề thi tuyển sinh Toán (chuyên) 2022-2023 Trường chuyên Lê Quý Đôn BR VT Đề thi tuyển sinh Toán (chuyên) 2022-2023 Trường chuyên Lê Quý Đôn BR VT Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 tại trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa – Vũng Tàu. Kỳ thi sẽ diễn ra vào ngày 09 tháng 06 năm 2022, đề thi bao gồm đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 Toán (chuyên) 2022 – 2023 trường chuyên Lê Quý Đôn – BR VT: + Cho tam giác ABC nhọn, AB AC nội tiếp đường tròn tâm O và có ba đường cao AD, BE, CF cắt nhau tại H. Gọi I, J lần lượt là trung điểm của AH và BC. a) Chứng minh rằng IJ vuông góc với EF và IJ song song với OA. b) Gọi K, Q lần lượt là giao điểm của EF với BC và AD. Chứng minh rằng QE = KE và QF = KF. c) Đường thẳng chứa tia phân giác của FHB cắt AB, AC lần lượt tại M và N. Tia phân giác của CAB cắt đường tròn ngoại tiếp tam giác AMN tại điểm P khác A. Chứng minh ba điểm H, P, J thẳng hàng. + Cho tam giác ABC cố định có diện tích S. Đường thẳng d thay đổi đi qua trọng tâm của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Gọi 1, 2 là diện tích các tam giác ABN và ACM. Hãy tìm giá trị nhỏ nhất của 1/2 + S/2. + Cho các số thực a, b, c, d thỏa mãn 2ac > bd. Chứng minh phương trình sau luôn có nghiệm: 2x^2 - ax + b = cx - dx.
Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Tiền Giang
Nội dung Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2022 - 2023 sở GD&ĐT Tiền Giang Đề thi tuyển sinh môn Toán năm 2022 - 2023 sở GD&ĐT Tiền Giang Xin chào quý thầy cô và các em học sinh lớp 9. Dưới đây là đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Tiền Giang. Kỳ thi diễn ra vào ngày 17 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 sở GD&ĐT Tiền Giang: Trong mặt phẳng toạ độ Oxy, cho parabol (P): y = x^2 và đường thẳng (d): y = -2x + 3. Vẽ parabol (P) và tìm toạ độ các giao điểm của (P) và (d) bằng phép tính. Viết phương trình đường thẳng (d′) song song với (d) và tiếp xúc (P). Tính toạ độ tiếp điểm M của (d′) và (P). Một xe tải đi từ A đến B cách nhau 210 km. Sau 2 giờ, trên cùng quãng đường, một ô tô khởi hành từ B đến A với vận tốc lớn hơn xe tải 10 km/h. Tính vận tốc xe tải khi hai xe gặp nhau tại nơi cách A 150 km. Cho tam giác ABC có ba góc nhọn. Kẻ các đường cao AD và BE (D ∈ BC và E ∈ AC). Chứng minh tứ giác ABDE nội tiếp đường tròn và xác định tâm O của đường tròn đó. Chứng minh rằng CD·CB = CE·CA. Giả sử ACB đo 60 độ và AB = 6 cm. Tính diện tích hình quạt tròn giới hạn bởi hai bán kính OD, OE và cung nhỏ DE của đường tròn (O). Hy vọng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!
Đề tuyển sinh môn Toán năm 2022 trường Thực Hành Cao Nguyên Đắk Lắk
Nội dung Đề tuyển sinh môn Toán năm 2022 trường Thực Hành Cao Nguyên Đắk Lắk Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2022 trường Thực Hành Cao Nguyên Đắk Lắk Đề tuyển sinh môn Toán năm 2022 trường Thực Hành Cao Nguyên Đắk Lắk Sytu xin gửi đến các thầy cô giáo và các em học sinh lớp 10 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 trường THPT Thực Hành Cao Nguyên, tỉnh Đắk Lắk. Kỳ thi này sẽ diễn ra vào ngày 18 tháng 06 năm 2022, với đề thi đầy đủ đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 trường Thực Hành Cao Nguyên – Đắk Lắk: Một ô tô và một xe máy xuất phát cùng một lúc từ hai điểm cách nhau 200 km theo hai hướng đối chiếu và gặp nhau sau 2 giờ. Hãy tính vận tốc của ô tô và xe máy, biết rằng nếu tốc độ của ô tô tăng thêm 10 km/h và tốc độ của xe máy giảm đi 5 km/h thì tốc độ của ô tô sẽ gấp đôi tốc độ của xe máy. Cho đường tròn có tâm O và đường kính AB. Gọi C và D là hai điểm nằm trên đường tròn O và nằm ở phía đối diện với đoạn thẳng AB. Gọi E và F lần lượt là trung điểm của hai đoạn thẳng AC và AD. Đề bài yêu cầu tính tổng 2AC + BC khi biết rằng bán kính của đường tròn O là 3cm, chứng minh rằng 4 điểm A, O, E, F cùng nằm trên một đường tròn và chứng minh rằng đường thẳng DK là tiếp tuyến của đường tròn O. Giải hệ phương trình được cho mà không sử dụng máy tính cầm tay. Với các bài toán đa dạng từ dễ đến khó, hy vọng đề thi này sẽ giúp các em học sinh lớp 10 tăng cường kiến thức và chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới. Chúc các em ôn tập hiệu quả và gặt hái được thành công trong kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Bình Phước
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Bình Phước Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Bình Phước Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Bình Phước Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022-2023 sở Giáo dục và Đào tạo tỉnh Bình Phước. Kỳ thi sẽ diễn ra vào ngày 07 tháng 06 năm 2022. Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Bình Phước bao gồm các nội dung sau: 1. Cho tam giác ABC nhọn nội tiếp đường tròn tâm O bán kính R. Gọi H là trực tâm của tam giác ABC, M là điểm bất kì trên cung nhỏ BC. Gọi I, J lần lượt là hình chiếu của M lên các đường thẳng BC, CA. Đường thẳng IJ cắt đường thẳng AB tại K. a) Chứng minh rằng bốn điểm B, K, M, I cùng thuộc một đường tròn và suy ra MK//AB. b) Gọi 123MM'M'' lần lượt là các điểm đối xứng của M qua các đường thẳng BC, CA, AB. Chứng minh bốn điểm 123MM'M'' và H thẳng hàng. c) Chứng minh khi điểm M di động trên cung nhỏ BC ta luôn có sinBAC=MM''/R. Xác định vị trí của điểm M khi đẳng bằng xảy ra. 2. Giải phương trình có nghiệm nguyên: 2x^2 + yxy - 6y^2 + 7 = 0. 3. Cho x, y là các số nguyên thỏa mãn x^2 + y^2 = 2021.2022 và xy chia hết cho x-y. Chứng minh rằng x, y là các số lẻ và nguyên tố cùng nhau. Mong rằng đề thi này sẽ giúp các em học sinh ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!