Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 12 môn Toán năm 2023 2024 trường chuyên Lê Hồng Phong Nam Định

Nội dung Đề học sinh giỏi lớp 12 môn Toán năm 2023 2024 trường chuyên Lê Hồng Phong Nam Định Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 12 năm học 2023 – 2024 trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định; đề thi gồm 40 câu trắc nghiệm và 20 câu viết đáp án, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán lớp 12 năm 2023 – 2024 trường chuyên Lê Hồng Phong – Nam Định : + Cho hàm đa thức y fx y gx có đồ thị là hai đường cong ở hình bên dưới. Biết rằng đồ thị hàm số y gx có đúng một điểm cực trị A, đồ thị y fx có đúng một điểm cực trị B và AB = 4 (AB vuông góc trục Ox). Tính tổng tất cả các giá trị nguyên của tham số m để hàm số y f x gx m có số điểm cực trị lớn nhất. + Chọn ngẫu nhiên bốn số tự nhiên khác nhau từ 70 số nguyên dương đầu tiên. Tính xác suất để bốn số được chọn lập thành một cấp số nhân có công bội nguyên. + Cho tập A = {1; 2; 3; 4; 5; 6}. Gọi S là tập hợp tất cả các tam giác có độ dài ba cạnh là các phần tử của A. Chọn ngẫu nhiên một phần tử thuộc S. Xác suất để phần tử được chọn là một tam giác có độ dài ba cạnh phân biệt bằng? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG lớp 12 môn Toán lần 4 năm 2023 2024 trường THPT Mai Anh Tuấn Thanh Hóa
Nội dung Đề giao lưu HSG lớp 12 môn Toán lần 4 năm 2023 2024 trường THPT Mai Anh Tuấn Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi giao lưu học sinh giỏi cụm các trường THPT môn Toán lớp 12 lần thứ 4 năm học 2023 – 2024 trường THPT Mai Anh Tuấn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 09 tháng 11 năm 2023; đề thi có đáp án trắc nghiệm mã đề 457 881 198 138 202. Trích dẫn Đề giao lưu HSG Toán lớp 12 lần 4 năm 2023 – 2024 trường THPT Mai Anh Tuấn – Thanh Hóa : + Một người thợ thủ công làm mô hình đèn lồng bát diện đều, mỗi cạnh của bát diện đó được làm từ các que tre có độ dài 8 cm. Hỏi người đó cần bao nhiêu mét que tre để làm 100 cái đèn (giả sử mối nối giữa các que tre có độ dài không đáng kể)? + Trước khi lấy được đồ đựng trong tủ đồ của mình thì An phải nhập mật mã của tủ đồ. Biết An chỉ nhớ rằng mật mã của tủ đồ là một dãy kí từ gồm 6 chữ số dạng abcdef (trong đó abcdef là các chữ số từ 0 đến 9) tương ứng với 3 cặp số phân biệt ab cd ef và hai trong ba cặp số này là 17, 24 cặp số còn lại không vượt quá 40 nhưng không nhớ thứ tự của chúng. Hỏi trong trường hợp xấu nhất An phải nhập mật mã tối đa bao nhiêu lần để mở được tủ đồ đó? + Cho tam giác ABC đều cạnh a. Đường thẳng ∆ vuông góc với (ABC) tại A. Điểm M thay đổi trên đường thẳng ∆ (M A). Đường thẳng đi qua các trực tâm của các tam giác ABC và MBC cắt đường thẳng ∆ tại N. Tìm GTNN của thể tích khối tứ diện MNBC. File WORD (dành cho quý thầy, cô):
Đề thi chọn HSG lớp 12 môn Toán năm 2023 2024 trường THPT Bắc Sơn Lạng Sơn
Nội dung Đề thi chọn HSG lớp 12 môn Toán năm 2023 2024 trường THPT Bắc Sơn Lạng Sơn Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 12 năm học 2023 – 2024 trường THPT Bắc Sơn, tỉnh Lạng Sơn; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán lớp 12 năm 2023 – 2024 trường THPT Bắc Sơn – Lạng Sơn : + Lập được bao nhiêu số tự nhiên lẻ gồm 4 chữ số đôi một khác nhau. Lập được bao nhiêu số chẵn gồm 5 chữ số đôi một khác nhau trong đó có hai chữ số lẻ và hai chữ số lẻ đứng cạnh nhau. + Cho hình chóp S.ABC có đáy ABC là tam giác đều SA ABC. Mặt phẳng (SBC) cách A một khoảng bằng a và hợp với mặt phẳng (ABC) góc 0 30. Tính thể tích của khối chóp S.ABC. + Một đội công nhân xây dựng phải xây một bể nước dạng hình hộp chữ nhật có thể tích 3(m3). Tỉ số giữa chiều cao của bể và chiều rộng của đáy bằng 4. Biết rằng bể nước chỉ có các mặt bên và mặt đáy (tức không có mặt trên). Tính chiều dài của đáy để người thợ xây tốn ít nguyên vật liệu nhất. File WORD (dành cho quý thầy, cô):
Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2023 2024 sở GD ĐT Thái Nguyên
Nội dung Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2023 2024 sở GD ĐT Thái Nguyên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thái Nguyên. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán lớp 12 năm 2023 – 2024 sở GD&ĐT Thái Nguyên : + Có 30 tấm thẻ được đánh số lần lượt từ 1 đến 30. Chọn ngẫu nhiên hai tấm thẻ. Tính xác suất để tích của hai số được đánh trên hai tấm thẻ chọn ra là một số chia hết cho 4. + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng đáy và góc giữa mặt phẳng (SBC) và mặt phẳng đáy bằng 60°. a. Tính thể tích khối chóp S.ABC. b. Tính côsin của góc tạo bởi đường thẳng AB và mặt phẳng (SBC). + Chứng minh rằng tồn tại số nguyên dương m sao cho với mọi số nguyên x, y thì 3×2 + 5xy + y2 – m không chia hết cho 13.
Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2023 2024 sở GD ĐT Bình Phước
Nội dung Đề học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2023 2024 sở GD ĐT Bình Phước Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra vào ngày 04 tháng 11 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán lớp 12 năm 2023 – 2024 sở GD&ĐT Bình Phước : + Gọi S là tập hợp các số tự nhiên có 5 chữ số đôi một khác nhau và các chữ số này được lấy từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9. Chọn ngẫu nhiên một số từ tập S, tính xác suất để số được chọn là số chẵn trong đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau. + Cho hình chóp tứ giác đều S.ABCD có O là giao điểm của AC và BD. Biết SO a 2 góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 0 45. a) Tính thể tích khối chóp S.ABCD theo a. b) Gọi K là điểm di động trong mặt phẳng (ABCD). Tìm SAK để biểu thức SA AK T SK đạt giá trị lớn nhất. + Cho hình trụ có đường kính đáy bằng 4 5. Một mặt phẳng không vuông góc với đáy và cắt hai đáy theo hai dây cung song song MN M N thoả mãn MN M N 8 4. Biết rằng tứ giác MNN M có diện tích bằng 54. Tính thể tích khối trụ đã cho.