Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG Toán 8 năm 2016 - 2017 phòng GDĐT Vĩnh Lộc - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa; đề thi có đáp án, lời giải và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa : + Cho tam giác ABC phân giác AD. Trên nửa phẳng không chứa A bờ BC, vẽ tia Cx sao cho BCX = 1/2.BAC. Cx cắt AD tại E; I là trung điểm DE. Chứng minh rằng : a) ΔABD đồng dạng với ΔCED. b) AE2 > AB.AC. c) 4AB.AC = 4AI2 – DE2. d) Trung trực của BC đi qua E. + Cho a, b, c là các số nguyên. Chứng minh rằng: a5 + b5 + c5 – (a + b + c) chia hết cho 30. + Cho a, b, c là 3 số dương thỏa mãn: 1/(1 + a) + 1/(1 + b) + 1/(1 + c) = 2. Tìm giá trị lớn nhất của biểu thức Q = abc.

Nguồn: toanmath.com

Đọc Sách

Đề HSG lớp 8 môn Toán vòng 2 năm 2022 2023 trường THCS Cao Xuân Huy Nghệ An
Nội dung Đề HSG lớp 8 môn Toán vòng 2 năm 2022 2023 trường THCS Cao Xuân Huy Nghệ An Bản PDF - Nội dung bài viết Đề HSG Toán lớp 8 vòng 2 năm 2022 - 2023 trường THCS Cao Xuân Huy Nghệ An Đề HSG Toán lớp 8 vòng 2 năm 2022 - 2023 trường THCS Cao Xuân Huy Nghệ An Chào mừng quý thầy cô và các em học sinh lớp 8 đến với đề thi chọn học sinh giỏi cấp trường môn Toán vòng 2 năm học 2022 - 2023 của trường THCS Cao Xuân Huy, Nghệ An. Đề thi bao gồm câu hỏi và đáp án chi tiết để hướng dẫn giải. Dưới đây là một số câu hỏi trong đề thi: Cho x, y là các số hữu tỷ khác 1 thỏa mãn: $\frac{1}{12} x = \frac{1}{12} y$. Chứng minh rằng $M = x^2 + y^2 - xy$ là bình phương của một số hữu tỷ. Cho đa thức f(x). Tìm số dư của phép chia f(x) cho $x(x+1)(x+2)$ biết rằng f(x) chia x-1 dư 7 và f(x) chia x+2 dư 1. Cho tam giác ABC vuông tại A, có đường cao AH và trung tuyến BN. Qua A kẻ đường thẳng vuông góc với BN cắt BN và BC lần lượt tại K và M. Chứng minh rằng: a) $(AK)^2 = AB . AC$ b) $\triangle BKH \sim \triangle BAH$ c) $\frac{MB^2}{BH} = \frac{BC}{2}$ Cho hình vuông có cạnh bằng 2023cm. Bên trong hình vuông, lấy 2022 điểm phân biệt sao cho trong 2026 điểm không có 3 điểm nào thẳng hàng. Chứng minh tồn tại 1 tam giác có diện tích không lớn hơn $\frac{2023}{2} cm^2$ với 3 trong số 2026 điểm đã cho. File WORD dành cho quý thầy cô có thể tải xuống để xem đầy đủ nội dung và đề thi chi tiết. Chúc quý vị và các em học sinh tập trung và làm bài tốt!
Đề HSG cấp huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Hiệp Hòa Bắc Giang
Nội dung Đề HSG cấp huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Hiệp Hòa Bắc Giang Bản PDF - Nội dung bài viết Giới thiệu về Đề HSG cấp huyện lớp 8 môn Toán năm 2022-2023Nội dung chi tiết Đề HSG Toán lớp 8 năm 2022-2023 Giới thiệu về Đề HSG cấp huyện lớp 8 môn Toán năm 2022-2023 Chào mừng quý thầy cô và các em học sinh lớp 8! Để chuẩn bị cho kỳ thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022-2023 do Phòng Giáo dục và Đào tạo huyện Hiệp Hòa, tỉnh Bắc Giang tổ chức, mình xin giới thiệu Đề thi HSG cấp huyện môn Toán lớp 8. Đề thi sẽ diễn ra vào ngày thứ Bảy, 25 tháng 03 năm 2023. Đề thi bao gồm các câu hỏi thú vị, thách thức giúp các em học sinh thử sức, khám phá và phát triển năng lực Toán học của mình. Nội dung chi tiết Đề HSG Toán lớp 8 năm 2022-2023 Trích dẫn một số câu hỏi trong đề thi: Cho đa thức \(f(x) = x^3 - 3x^2 + 3x - 4\). Với giá trị nguyên nào của \(x\) thì giá trị của đa thức \(f(x)\) chia hết cho giá trị của đa thức \(x^2 + 2\). Cho \(O\) là trung điểm của đoạn \(AB\). Kẻ tia Ax, By cùng vuông góc với \(AB\). Tính chứng minh và tìm các đường thẳng liên quan đến \(O\), \(A\), \(B\). Trong tam giác \(ABC\) có đường cao, đường trung tuyến và đường phân giác đồng quy. Chứng minh một số tính chất trong tam giác. Đây là một số câu hỏi đại diện trong Đề thi HSG cấp huyện năm 2022-2023. Chúc các em học sinh lớp 8 ôn tập tốt và thi đạt kết quả cao trong kỳ thi sắp tới!
Đề kiểm định HSG lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Triệu Sơn Thanh Hóa
Nội dung Đề kiểm định HSG lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Triệu Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề kiểm định HSG lớp 8 môn Toán năm 2022-2023 phòng GD&ĐT Triệu Sơn Thanh Hóa Đề kiểm định HSG lớp 8 môn Toán năm 2022-2023 phòng GD&ĐT Triệu Sơn Thanh Hóa Xin gửi đến quý thầy cô và các em học sinh lớp 8 đề kiểm định chất lượng học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào ngày 17 tháng 03 năm 2023. Dưới đây là một số câu hỏi mẫu từ bài thi: 1. Cho a2(b + c) = b2(c + a) = 2023 với a, b, c đôi một khác nhau và khác không. Tính giá trị của biểu thức P = c2(a + b). 2. Cho p là số nguyên tố thỏa mãn (p + 1)/2 và (p2 + 1)/2 đều là số chính phương. Chứng minh p2 − 1 chia hết cho 48. 3. Hình bình hành ABCD có O là giao điểm của hai đường chéo. Kẻ CP vuông góc với đường thẳng AB tại P, CQ vuông góc với đường thẳng AD tại Q. Ở câu hỏi này còn nhiều phần nhỏ khác nhau, giúp học sinh thể hiện sự logic và khả năng giải quyết vấn đề. Chúc quý thầy cô và các em học sinh có những bài thi thành công và học tập hiệu quả!
Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 trường THCS Hải Hòa Nam Định
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 trường THCS Hải Hòa Nam Định Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm học 2022 - 2023 trường THCS Hải Hòa Nam Định Đề học sinh giỏi Toán lớp 8 năm học 2022 - 2023 trường THCS Hải Hòa Nam Định Chúng tôi xin gửi đến quý thầy cô và các em học sinh lớp 8 một bộ đề thi chọn học sinh giỏi môn Toán năm học 2022 - 2023 tại trường THCS Hải Hòa, huyện Hải Hậu, tỉnh Nam Định. Trích dẫn một số câu hỏi từ Đề thi học sinh giỏi Toán lớp 8 năm 2022 - 2023 trường THCS Hải Hòa: 1. Cho biểu thức A = x^2 + x - 2. a) Nêu điều kiện tồn tại và rút gọn biểu thức A. b) Tính giá trị của biểu thức A khi x thoả mãn: x^2 + x = 2. c) Tìm các giá trị x > 0 sao cho biểu thức 6B - A là số nguyên. 2. Cho tam giác ABC nhọn. Các đường cao AE và BF giao nhau tại H. Gọi M là trung điểm của BC. Vẽ đường thẳng a vuông góc với HM cắt AB, AC lần lượt tại I và K. a) Chứng minh. b) Kẻ đường thẳng b qua C song song với IK, b cắt AH, AB tại N và D. Chứng minh: NC = ND và HI = HK. c) Gọi G là giao điểm của CH và AB. Tìm giá trị nhỏ nhất của biểu thức P. 3. Cho hai số dương x, y thỏa mãn: x^2 + y^2 = 12 và 4x + 9y = 1. Hãy tìm giá trị nhỏ nhất của biểu thức Q = xy/(x^2 - 3y^2). Đề thi đầy thách thức này không chỉ giúp các em học sinh rèn luyện kỹ năng Toán mà còn phát triển khả năng tư duy logic và sự sáng tạo trong giải quyết vấn đề. Chúc các em học sinh có kết quả tốt trong kỳ thi sắp tới!