Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán vào năm 2022 2023 phòng GD ĐT Thọ Xuân Thanh Hoá

Nội dung Đề KSCL Toán vào năm 2022 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Bản PDF - Nội dung bài viết Đề KSCL Toán vào năm 2022 - 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Đề KSCL Toán vào năm 2022 - 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán để ôn thi tuyển sinh vào lớp 10 THPT năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá. Kỳ thi sẽ diễn ra vào ngày 02 tháng 06 năm 2022. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề KSCL Toán vào lớp 10 năm 2022 - 2023 của phòng GD&ĐT Thọ Xuân - Thanh Hoá: + Cho nửa đường tròn có tâm O, bán kính R, đường kính AB, I là điểm cố định thuộc đoạn thẳng OB. Vẽ đường thẳng d vuông góc với AB tại I, d cắt nửa đường tròn tại K. Lấy điểm M thuộc cung nhỏ BK, tia BM cắt đường thẳng d tại C, đoạn thẳng AM cắt đường thẳng d tại N, AC cắt nửa đường tròn tại D. a) Chứng minh tứ giác BMNI là tứ giác nội tiếp b) Chứng minh ba điểm B, N, D thẳng hàng và tính AD.AC + BM.BC theo R c) Chứng minh O’ luôn nằm trên một đường thẳng cố định khi M di chuyển trên cung nhỏ KB. + Trong hệ trục tọa độ Oxy, cho parabol (P): y = 2x^2 và đường thẳng (d): y = (m + 1)x – m + 3 (m là tham số ) a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm A và B phân biệt với mọi giá trị của m b) Tìm giá trị m để 2y1 + 2y2 = (m + 1)x2 + 2 + 8. + Cho 3 số thực dương x, y, z thỏa mãn: x^2 + y^2 + z^2 = 1. Tìm giá trị nhỏ nhất của biểu thức: 2x^2y^2z^2 + y^2z^2x^2 + z^2x^2y^2. Đề thi năm nay đòi hỏi kiến thức và sự sáng tạo của các em học sinh. Chúc các em có kết quả tốt trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề ôn tập Toán 9 tháng 022020 trường THPT chuyên Hà Nội Amsterdam
Đề khảo sát Toán 9 tháng 1 năm 2020 trường THCS Phúc Diễn - Hà Nội
Trước thời điểm học sinh lớp 9 chuẩn bị bước vào kỳ nghỉ Tết Nguyên Đán, trường THCS Phúc Diễn, quận Bắc Từ Liêm, thành phố Hà Nội đã tổ chức kỳ thi kiểm tra khảo sát tháng 1 năm 2020 môn Toán 9. Đề khảo sát Toán 9 tháng 1 năm 2020 trường THCS Phúc Diễn – Hà Nội gồm có 04 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán 9 tháng 1 năm 2020 trường THCS Phúc Diễn – Hà Nội : + Cho hàm số y = (m + 1)x – 2 có đồ thị là đường thẳng d. a) Tìm m để đồ thị hàm số d cắt đồ thị hàm số y = x + 3 tại điểm có tung độ là 2. b) Vẽ đồ thị hàm số tìm được ở câu a. Tính diện tích tam giác tạo bởi đồ thị hàm số với 2 trục tọa độ. [ads] + Giải bài toán bằng cách lập hệ phương trình: Hai tổ sản xuất trong tháng đầu được tất cả 300 sản phẩm. Sang tháng thứ hai, tổ 1 làm vượt mức 25% so với tháng đầu, tổ II làm giảm mức 10% so với tháng đầu vì vậy cả hai tổ đã làm được nhiều hơn tháng đầu là 5 sản phẩm. Tính số sản phẩm mỗi tổ làm được trong tháng đầu. + Cho đường tròn tâm O bán kính R điểm A ở ngoài đường tròn. Qua A kẻ tiếp tuyến AB với (O;R) (B là tiếp điểm). Kẻ đường kính BC, nối AC cắt (O) tại điểm thứ hai là E. 1) Chứng minh rằng: EC.AC = 4R^2. 2) Qua A kẻ tiếp tuyến AM với (O) (M là tiếp điểm). Chứng minh rằng: MC || AO. 3) Qua O kẻ đường vuông góc với MC cắt AM kéo dài tại K. Chứng minh rằng: KC là tiếp tuyến (O). 4) Chứng minh rằng: BC là tiếp tuyến đường tròn đường kính AK.
Đề khảo sát tháng 11 Toán 9 năm 2019 - 2020 trường Nam Từ Liêm - Hà Nội
Tuần qua, trường THCS Nam Từ Liêm – Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 giai đoạn tháng 11 năm học 2019 – 2020, đây là kỳ thi được tổ chức định kỳ hàng tháng nhằm giúp các em học sinh khối lớp 9 được rèn luyện thường xuyên, hướng đến kỳ thi tuyển sinh vào lớp 10 môn Toán. Đề khảo sát tháng 11 Toán 9 năm 2019 – 2020 trường Nam Từ Liêm – Hà Nội gồm có 01 trang với 05 bài toán tự luận, thời gian làm bài 90 phút, đề thi được biên soạn với cấu trúc tương tự đề tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo Hà Nội những năm học trước. Trích dẫn đề khảo sát tháng 11 Toán 9 năm 2019 – 2020 trường Nam Từ Liêm – Hà Nội : + Một chiếc thuyền dự định đi từ vị trí A bên bờ sông bên này sang vị trí B bên bờ sông bên kia. AB vuông góc với hai bờ. Nhưng do dòng nước chảy xiết nên chiếc thuyền đã đi lệch một góc 20° và đến vị trí C bên bờ bên kia. Biết khoảng cách giữa hai bờ là 160m. Tính khoảng cách BC (làm tròn đến chữ số thập phân thứ nhất). [ads] + Cho hàm số bậc nhất y = (m – 1)x + 2m + 1 với m khác 1. a) Vẽ đồ thị hàm số với m = – 2. b) Tìm m để đồ thị hàm số song song với đường thẳng y = 2x + 1. c) Tìm m để đồ thị hàm số cắt đường thẳng y = 2x – 7 tại điểm có hoành độ bằng 2. d) Tìm điểm cố định mà đồ thị hàm số luôn đi qua với mọi m. + Cho đường tròn (O;R) và điểm A là một điểm cố định thuộc đường tròn. Kẻ đường thẳng d tiếp xúc với đường tròn tại A. Trên đường thẳng d lấy điểm M (M khác A), kẻ dây cung AB vuông góc với OM tại H. a) Chứng minh BM là tiếp tuyến của (O) và bốn điểm A, O, M, B cùng thuộc một đường tròn. b) Kẻ đường kính AD của (O), đoạn thẳng DM cắt đường tròn (O) tại điểm thứ hai là E. Chứng minh MA^2 = MH.MO = ME.MD. Từ đó suy ra: góc EHM = góc ODM . c) Qua O kẻ đường thẳng song song với AB cắt MA, MB lần lượt tại P và Q. Tìm vị trí của điểm M trên đường thẳng d để diện tích tam giác MPQ đạt giá trị nhỏ nhất?
Đề kiểm tra chất lượng Toán 9 năm 2019 - 2020 trường Lê Quý Đôn - TP HCM
Nhằm mục đích kiểm tra định kỳ môn Toán lớp 9 giai đoạn giữa học kỳ 1, ngày … tháng 10 năm 2019, trường THCS Lê Quý Đôn, quận 3, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng Toán 9 năm học 2019 – 2020. Đề kiểm tra chất lượng Toán 9 năm 2019 – 2020 trường Lê Quý Đôn – TP HCM gồm có 05 bài toán, đề được biên soạn theo dạng tự luận hoàn toàn, học sinh làm bài trong 90 phút. Trích dẫn đề kiểm tra chất lượng Toán 9 năm 2019 – 2020 trường Lê Quý Đôn – TP HCM : + Hai món hàng: món thứ nhất giá gốc 150.000 đồng, món thứ hai giá gốc 200.000 đồng. Khi bán món thứ nhất lãi 10% và món thứ hai lãi 12% (tính trên giá gốc). Hỏi bán cả hai món thu được tổng cộng bao nhiêu tiền? [ads] + Một chiếc máy bay bay lên với vận tốc 600 km/h. Đường bay lên tạo với phương nằm ngang một góc 30 độ. Hỏi sau 1 phút 12 giây máy bay lên cao được bao nhiêu kilômét theo phương thẳng đứng? + Cho tam giác ABC vuông tại A có đường cao AH. a) Cho CH = 9 cm, AH = 6 cm. Tính độ dài đoạn thẳng BH, BC, AB, AC (kết quả làm tròn đến chữ số thập phân thứ nhất). b) Trên tia đối của tia AB lấy điểm K sao cho góc AKC = 60 độ. Tính độ dài đoạn thẳng AK (kết quả làm tròn đến chữ số thập phân thứ nhất). c) Gọi D và E lần lượt là hình chiếu của H trên AB, AC. Qua A kẻ đường thẳng vuông góc với DE cắt BC tại M (M thuộc BC). Kẻ Cx là tia phân giác của góc ACB, qua M kẻ đường thẳng song song với AC cắt tia Cx tại F (F thuộc tia Cx). Chứng minh: BF vuông góc với Cx.