Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2022 - 2023 sở GDĐT Tiền Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên Toán) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Tiền Giang; kỳ thi được diễn ra vào ngày 18 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2022 – 2023 sở GD&ĐT Tiền Giang : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = ax2 qua M(3;3) và đường thẳng (d): y = -1/2.x + m (với m là tham số). Xác định phương trình của parabol (P), từ đó tìm tất cả các giá trị của tham số m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A(xA;yA), B(xB;yB) khác gốc tọa độ sao cho? + Gọi x1, x2 là hai nghiệm của phương trình x2 + mx + 1 = 0 và x3, x4 là hai nghiệm của phương trình x2 + nx + 1 = 0 với m và n là các tham số thỏa mãn. Chứng minh rằng. 3) Cho hai số x và y liên hệ với nhau bởi đẳng thức. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức S = x – y + 2. + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn tâm O, có ba đường cao AD, BE, CF (D thuộc BC, E thuộc AC, F thuộc AB) cắt nhau tại H. Tia AO cắt BC tại M và cắt (O) tại N; gọi P, Q lần lượt là hình chiếu của M trên AB, AC. Chứng minh: 1) DH là tia phân giác của EDF. 2) HE/HF = NB/NC. 3) HE.MQ.HB = HF.MP.NC.

Nguồn: toanmath.com

Đọc Sách

Phân tích và bình luận một số đề thi vào chuyên của một số trường trên cả nước năm 2017
Nội dung Phân tích và bình luận một số đề thi vào chuyên của một số trường trên cả nước năm 2017 Bản PDF - Nội dung bài viết Phân tích và bình luận đề thi vào chuyên năm 2017 Phân tích và bình luận đề thi vào chuyên năm 2017 Trong tài liệu này, chúng tôi cung cấp phân tích và bình luận về một số đề thi vào lớp 10 chuyên của các trường trên cả nước vào năm 2017. Các đề thi bao gồm: Đề tuyển sinh vào lớp 10 chuyên Lê Hồng Phong, TP. HCM Đề thi Phổ thông năng khiếu đại học Quốc gia TP. HCM (Vòng 1) Đề thi tuyển sinh THPT Chuyên Lam Sơn – Thanh Hóa (Vòng 1) Đề thi tuyển sinh trường KHTN – ĐHQG Hà Nội năm 2017-2018 (Không chuyên) Đề thi tuyển sinh trường THPT Chuyên KHTN Hà Nội (Vòng 2) Đề thi tuyển sinh trường THPT Chuyên, Bình Dương Đề thi tuyển sinh THPT Chuyên Lê Hồng Phong – Nam Định Đề thi tuyển sinh trường THPT Chuyên Lê Quý Đôn, Bà Rịa – Vũng Tàu (Vòng 2) Đề thi tuyển sinh trường THPT Chuyên, tỉnh Bạc Liêu Đề thi chuyên sở GD&ĐT Hưng Yên Đề thi THPT chuyên Lương Thế Vinh sở GD&ĐT Đồng Nai Đề thi tuyển sinh THPT Chuyên Tiền Giang Trong tài liệu này, chúng tôi sẽ phân tích và bình luận chi tiết về cấu trúc, độ khó, và cách giải của mỗi đề thi để giúp các bạn học sinh hiểu rõ hơn về các đề thi vào chuyên năm 2017. Hy vọng rằng thông tin trong tài liệu sẽ hữu ích cho việc ôn tập và chuẩn bị cho kỳ thi sắp tới của các bạn.
Đề thi thử vào môn Toán năm 2018 trường THPT Sơn Tây Hà Nội
Nội dung Đề thi thử vào môn Toán năm 2018 trường THPT Sơn Tây Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào lớp 10 môn Toán năm 2018 trường THPT Sơn Tây – Hà Nội Đề thi thử vào lớp 10 môn Toán năm 2018 trường THPT Sơn Tây – Hà Nội Đề thi thử vào lớp 10 môn Toán năm 2018 trường THPT Sơn Tây – Hà Nội bao gồm 1 trang đề thi với 4 bài toán tự luận. Thời gian làm bài là 120 phút. Kỳ thi được tổ chức nhằm giúp các em học sinh lớp 9 muốn thi tuyển vào trường có cơ hội làm quen với cấu trúc đề thi, chuẩn bị tốt nhất cho kỳ thi vượt cấp sắp tới. Đề thi cũng đi kèm với lời giải chi tiết để học sinh có thể tự kiểm tra và tự kiểm tra kiến thức của mình sau khi làm bài.
Đề thi thử vào môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy Nam Định
Nội dung Đề thi thử vào môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy Nam Định Bản PDF - Nội dung bài viết Đề thi thử vào môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy Nam Định Đề thi thử vào môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy Nam Định Đề thi thử vào lớp 10 môn Toán THPT năm 2018 của phòng GD và ĐT Giao Thủy – Nam Định bao gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận. Thời gian làm bài là 120 phút, đề thi cung cấp đáp án và lời giải chi tiết cho thí sinh. Trích dẫn một số câu hỏi từ đề thi: Cắt một hình cầu bởi một mặt phẳng cách tâm hình cầu 4dm. Biết bán kính hình cầu bằng 5dm. Chu vi mặt cắt bằng là bao nhiêu? Cho tam giác IAB vuông tại I. Quay tam giác IAB một vòng quanh cạnh IA cố định ta được một hình gì? Trong hệ tọa độ Oxy, cho Parabol (P): y = x^2 và đường thẳng (d): y = 4x + 1 – m. Hỏi khi m = 4, tìm tất cả các hoành độ giao điểm của (d) và (P). Tìm tất cả các giá trị của m sao cho đường thẳng (d) cắt Parabol (P) tại hai điểm có tung độ thỏa mãn √y1.√y2 = 5. Đề thi mang đến cho học sinh một cơ hội để ôn tập và kiểm tra kiến thức, chuẩn bị tốt nhất cho kỳ thi sắp tới. Mong rằng các em sẽ đạt kết quả tốt trong bài thi này!
Đề thi thử vào môn Toán phòng GD và ĐT Hải Hậu Nam Định lần 1
Nội dung Đề thi thử vào môn Toán phòng GD và ĐT Hải Hậu Nam Định lần 1 Bản PDF - Nội dung bài viết Đề thi thử vào lớp 10 môn Toán phòng GD và ĐT Hải Hậu Nam Định lần 1 Đề thi thử vào lớp 10 môn Toán phòng GD và ĐT Hải Hậu Nam Định lần 1 Đề thi thử vào lớp 10 môn Toán phòng GD và ĐT Hải Hậu – Nam Định lần 1 là bài kiểm tra được biên soạn theo hình thức trắc nghiệm kết hợp với tự luận. Bài thi bao gồm 8 câu hỏi trắc nghiệm (chiếm 20% số điểm) và 5 bài toán tự luận (chiếm 80% số điểm). Thời gian làm bài là 120 phút, và đề thi đi kèm đáp án và lời giải chi tiết để thí sinh có thể tự kiểm tra và ôn tập sau khi hoàn thành bài thi. Trích dẫn một số câu hỏi trong đề thi: Đồ thị của hàm số y = (m – 2019)x + m + 2018 (với m là tham số) tạo với trục Ox một góc nhọn khi nào? Hình nón có bán kính đáy là 6cm, chiều cao là 8cm. Tính diện tích xung quanh của hình nón. Hai đường tròn (O) và (O’) tiếp xúc ngoài nhau. Tính số tiếp tuyến chung của hai đường tròn đó. Đề thi này được thiết kế để kiểm tra khả năng giải quyết các bài toán toán học của học sinh, từ các kiến thức cơ bản đến khả năng áp dụng kiến thức vào các tình huống thực tế. Bằng cách ôn tập và làm các bài thi thử như vậy, học sinh có thể nâng cao hiểu biết và kỹ năng giải quyết bài toán của mình, chuẩn bị tốt cho kỳ thi chính thức vào lớp 10.