Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Phan Ngọc Hiển Cà Mau

Nội dung Đề học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Phan Ngọc Hiển Cà Mau Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng cuối học kỳ 1 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Phan Ngọc Hiển, huyện Năm Căn, tỉnh Cà Mau; đề thi được biên soạn theo cấu trúc 70% trắc nghiệm + 30% tự luận, thời gian học sinh làm bài thi là 90 phút; đề thi có đáp án và hướng dẫn giải mã đề 001 002 003 004. Trích dẫn Đề học kỳ 1 Toán lớp 10 năm 2022 – 2023 trường THPT Phan Ngọc Hiển – Cà Mau : + Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70m, phương nhìn AC tạo với phương nằm ngang góc 0 30 phương nhìn BC tạo với phương nằm ngang góc 0 15 30. Ngọn núi đó có độ cao so với mặt đất gần nhất với giá trị nào sau đây? + Có bao nhiêu phát biểu dưới đây là mệnh đề? (a) Mấy giờ rồi? (b) Tôi thích học môn Toán! (c) 17 là số nguyên tố. (d) Cả lớp nộp bài kiểm tra! (e) 972 chia hết cho 3. + Trong mặt phẳng Oxy, cho ∆ABC có ABC 23 24 51. a. Tìm tọa độ điểm M là trung điểm BC. b. Tìm tọa độ điểm G là trọng tâm ∆ABC . c. Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 10 năm 2020 - 2021 trường THPT Phan Ngọc Hiển - Cà Mau
Đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Phan Ngọc Hiển – Cà Mau mã đề 134 gồm có 02 trang, đề được biên soạn theo dạng trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 20 câu (4,0 điểm), phần tự luận gồm 05 câu (6,0 điểm), thời gian làm bài 90 phút, kỳ thi được tổ chức vào thứ Năm ngày 24 tháng 12 năm 2020, đề thi có đáp án mã đề 134, 215, 315, 418. Trích dẫn đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Phan Ngọc Hiển – Cà Mau : + Trong các câu sau, câu nào không phải là mệnh đề? A. Bạn có thường đi du lịch vào kì nghỉ hè không? B. Hà Nội là thủ đô của Việt Nam. C. 2 là số nguyên tố chẵn. D. Một năm có 12 tháng. + Trong mặt phẳng Oxy, cho tam giác ABC với A(2;4); B(-3;2); C(5;1). a. Tìm toạ độ trọng tâm G của tam giác ABC. b. Tìm tọa độ điểm D sao cho ABCD là hình bình hành. + Cho tam giác ABC. Gọi M là một điểm trên cạnh BC sao cho MB = 4MC. Khi đó?
Đề thi HK1 Toán 10 (chuyên Toán) năm 2020 - 2021 trường chuyên Nguyễn Huệ - Hà Nội
Đề thi HK1 Toán 10 (chuyên Toán) năm 2020 – 2021 trường chuyên Nguyễn Huệ – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán 10 (chuyên Toán) năm 2020 – 2021 trường chuyên Nguyễn Huệ – Hà Nội : + Cho tam giác ABC thỏa mãn: cos2A + cos2B + cos2C + 1 = 0. Chứng minh rằng tam giác ABC là tam giác vuông. + Cho p là một số nguyên tố lẻ. Chứng minh rằng A = 7^p – 5^p – 2 luôn là bội số của 6p. + Cho O, I lần lượt là tâm đường tròn ngoại tiếp và nội tiếp của tam giác ABC. Đường thẳng vuông góc với AI tại A cắt BI, CI tại K, M. Gọi B’, C’ lần lượt là giao điểm của BI với AC và CI với AB. Đường thẳng B’C’ cắt đường tròn (O) tại N, E. 1. Chứng minh rằng KM, NE, BC đồng quy. 2. Chứng minh rằng M, N, E, K đồng viên.
Đề thi HK1 Toán 10 chuyên năm 2020 - 2021 trường chuyên Lê Hồng Phong - Nam Định
Đề thi HK1 Toán 10 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi HK1 Toán 10 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định : + Cho tam giác nhọn, không cân ABC nội tiếp đường tròn (O), có các đường cao AH, BE, CF. Tiếp tuyến tại B và C của (O) cắt nhau tại T. Gọi D là giao điểm của AT và BC, S là giao điểm của EF và BC, G là hình chiếu vuông góc của T trên AO, J là giao điểm thứ hai của TH và đường tròn ngoại tiếp tam giác OBC. Chứng minh: a) Các điểm S, J, M, T cùng thuộc một đường tròn, với M là trung điểm của BC. b) Các đường thẳng SO, TH, DG đồng quy tại một điểm. + Tìm số dư khi chia 11^12 + 12^13 + 13^14 cho 7. + Cho p là số nguyên tố và a, b là các số nguyên dương lẻ thỏa mãn a – b chia hết cho p – 1 và a + b chia hết cho p. Chứng minh a^b + b^a chia hết cho p.
Đề thi HK1 Toán 10 năm 2020 - 2021 trường THPT Nguyễn Thị Minh Khai - TP HCM
Đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp số và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(-5;0), B(1;0), C(2;3). a) Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC. b) Tìm tọa độ điểm M thuộc tia Oy sao cho |2MA – MB| nhỏ nhất. + Tìm giá trị lớn nhất của hàm số y = f(x) = x(3 – 2x) khi 0 =< x =< 3/2. + Giải các phương trình và hệ phương trình sau.