Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán phương trình và hệ phương trình - Trần Quốc Nghĩa

Tài liệu gồm 88 trang tuyển tập phương pháp giải, ví dụ mẫu và bài tập trắc nghiệm có đáp án các dạng toán chủ đề phương trình và hệ phương trình trong chương 3 Đại số 10. Nội dung tài liệu : Vấn đề 1. Đại cương về phương trình + Dạng 1. Tìm điều kiện của phương trình + Dạng 2. Giải phương trình bằng cách biến đổi tương đương hoặc dùng phương trình hệ quả Vấn đề 2. Phương trình bậc nhất: ax + b = 0 + Dạng 1. Giải và biện luận phương trình ax + b = 0 + Dạng 2. Phương trình có nghiệm, vô nghiệm Vấn đề 3. Phương trình bậc hai: ax^2 + bx + c = 0 + Dạng 1. Giải và biện luận phương trình ax^2 + bx + c = 0 + Dạng 2. Điều kiện có nghiệm, vô nghiệm + Dạng 3. Dùng phương pháp đồ thị để biện luận số nghiệm của phương trình bậc hai bằng đồ thị + Dạng 4. Dấu của nghiệm số [ads] + Dạng 5. Tìm hệ thức độc lập đối với tham số + Dạng 6. Lập phương trình bậc hai khi biết 2 nghiệm + Dạng 7. Không giải phương trình, tính giá trị các hệ thức chứa 2 nghiệm x1, x2 của phương trình ax^2 + bx + c = 0 + Dạng 8. Xác định m để phương trình ax^2 + bx + c = 0 có 2 nghiệm x1, x2 thỏa điều kiện (*) cho trước Vấn đề 4. Một số phương trình quy về phương trình bậc nhất hoặc bậc hai + Dạng 1. Phương trình chứa ẩn trong dấu giá trị tuyệt đối + Dạng 2. Phương trình chứa ẩn ở mẫu + Dạng 3. Phương trình chứa ẩn dưới dấu căn + Dạng 4. Một số phương trình dùng ẩn phụ để đưa về phương trình bậc hai Vấn đề 5. Phương trình và hệ phương trình bậc nhất nhiều ẩn + Dạng 1. Giải và biện luận hệ phương trình bậc nhất hai ẩn + Dạng 2. Giải và biện luận hệ phương trình bậc nhất hai ẩn + Dạng 3. Giải hệ phương trình bậc nhất hai ẩn, ba ẩn Vấn đề 6. Hệ phương trình bậc hai hai ẩn + Dạng 1. Hệ gồm 1 phương trình bậc nhất và 1 phương trình bậc hai + Dạng 2. Hệ đối xứng loại 1 + Dạng 3. Hệ đối xứng loại 2 + Dạng 4. Hệ phương đẳng cấp

Nguồn: toanmath.com

Đọc Sách

Các dạng Bất phương trình vô tỉ và cách giải
Tài liệu gồm 17 trang trình bày các dạng bất phương trình vô tỉ và hướng dẫn phương pháp giải các bất phương trình vô tỉ đó.
Tuyển tập 30 bài toán bất phương trình vô tỉ - Nguyễn Minh Tiến
Tài liệu gồm 18 trang tuyển chọn 30 bài toán bất phương trình vô tỉ có lời giải chi tiết, tài liệu được biên soạn bởi tác giả Nguyễn Minh Tiến.
Tuyển tập 100 bài toán Hệ phương trình
Tài liệu gồm 52 trang tuyển chọn và giải chi tiết 100 bài toán hệ phương trình, các bài toán hệ phương trình được tuyển chọn gồm nhiều dạng bài khác nhau, trong mỗi bài toán lại được giải bằng nhiều phương pháp, cách giải khác nhau nhằm giúp học sinh tiếp cận được nhiều dạng toán về hệ phương trình và có nhiều hướng tiếp cận khi giải bài toán này.
Kinh nghiệm giải Oxy và phương trình trong đề thi Quốc gia - Nguyễn Lê Đức Trọng
Tài liệu gồm 77 trang truyền đạt các kinh nghiệm giải Oxy và phương trình trong đề thi THPT Quốc gia do tác giả đúc kết qua quá trình học tập. Lời giới thiệu : Tôi là một cựu học sinh của trường THPT Chuyên Thủ Khoa Nghĩa, niên khoá 2013 – 2016 và vừa trải qua kì thi THPT Quốc gia năm 2016. Trong quá trình ôn luyện thi môn Toán, tôi có một số kinh nghiệm đúc kết cho bản thân thông qua việc làm bài tập, đặc biệt là trong các dạng bài tập phân loại như hình học giải tích phẳng Oxy, phương trình, hệ phương trình, bất phương trình. Riêng phần bất đẳng thức, giá trị lớn nhất, nhỏ nhất tôi sẽ hoàn thành nếu còn thời gian. Bây giờ, tôi thực hiện bài viết này nhằm chia sẻ với các bạn điều đó, vì trong thời gian sau thi hầu như tôi khá rãnh rỗi. Bài viết không chất chứa nhiều bài toán, vì tôi nghĩ với xu thế thị trường sách tham khảo phong phú như bây giờ thì việc tìm những quyển sách tham khảo cho mỗi bạn không hề khó khăn, các bạn có rất nhiều sự lựa chọn tác giả và đầu sách phù hợp với khả năng, sở thích của mình. Vì thế, bài viết này chỉ đơn giản là một tài liệu nhằm trao đổi kinh nghiệm trong việc giải toán, một công cụ để các bạn tìm ra lời giải cho bài toán, chứ không nhằm tiếp thu nhiều dạng toán khác nhau. [ads] Bài viết này phù hợp với các bạn học sinh đã học xong chương trình toán lớp 10, những bạn có mục tiêu điểm 7, 8, 9 môn Toán trong kì thi THPT Quốc gia và tuyển sinh ĐH, CĐ sắp tới. Vì cũng chỉ là người đã từng tiếp thu tri thức, người đã đi trước các bạn một bước trong quá trình chuẩn bị cho kì thi lớn trong cuộc đời học sinh, nên trình độ nhận thức của tôi đôi khi cũng rất hạn chế. Bài viết này là những nhận thức chủ quan, có khi đúng, có khi sai, nhưng tôi sẽ cố gắng hạn chế tối đa những sai lầm. Chúng ta có thể trao đổi với nhau để tìm ra con đường ngắn hơn để đi đến kết quả cuối cùng. Tôi luôn sẵn sàng tiếp nhận những ý kiến trao đổi của các bạn và nhìn nhận sai lầm của mình. Hi vọng bài viết sẽ là công cụ hữu ích cho các bạn trong bước đường chuẩn bị cho kì thi THPT Quốc gia 2017, 2018 và những năm tiếp theo. Chúc mọi người, đặc biệt là các bạn có được một quá trình rèn luyện và chuẩn bị tốt cho kì thi của riêng mình, đạt kết quả cao nhất.