Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Nguyễn Tài Chung

Tài liệu gồm 96 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung, tổng hợp tóm tắt lý thuyết, phương pháp giải toán và bài tập trắc nghiệm có đáp án chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit, hỗ trợ học sinh trong quá trình học tập chương trình Giải tích 12 chương 1. BÀI 1 . LŨY THỪA. Dạng 1. Rút gọn biểu thức. Dạng 2. Chứng minh đẳng thức. Dạng 3. Chứng minh bất đẳng thức. Dạng 4. Các bài tập sử dụng công thức lãi kép. Dạng 5. Một số bài tập khác. BÀI 2 . LÔGARIT. Dạng 6. Tính toán, rút gọn về lôgarit. Dạng 7. Chứng minh đẳng thức. Dạng 8. So sánh hai số ở dạng lôgarit. Bất đẳng thức chứa lôgarit. Dạng 9. Bài tập ứng dụng lôgarit thập phân. Dạng 10. Bài tập ứng dụng công thức lãi kép liên tục. Dạng 11. Biểu diễn lôgarit theo các lôgarit cho trước. BÀI 3 . HÀM SỐ MŨ, HÀM SỐ LÔGARIT VÀ HÀM SỐ LŨY THỪA. Dạng 12. Tìm tập xác định của hàm số mũ, hàm số lôgarit, hàm số lũy thừa. Dạng 13. Khảo sát và vẽ đồ thị hàm số mũ, hàm số lôgarit, hàm số lũy thừa. Dạng 14. Chứng minh đẳng thức hàm. Dạng 15. Xét tính chẵn, lẻ của hàm số mũ, lôgarit, lũy thừa. Dạng 16. Tính giới hạn. Dạng 17. Tính đạo hàm. Dạng 18. Chứng minh đẳng thức chứa đạo hàm. Dạng 19. Chứng minh đẳng thức chứa vi phân. Dạng 20. Xét tính đơn điệu của hàm số mũ, hàm số lôgarit, hàm số lũy thừa. Dạng 21. Tìm giá trị lớn nhất, giá trị bé nhất của hàm số mũ, hàm số lôgarit. Dạng 22. Một số bất đẳng thức được chứng bằng cách khảo sát hàm số mũ, hàm số lôgarit. Dạng 23. Chứng minh bất đẳng thức bằng cách lôgarit hóa. Dạng 24. Bất đẳng thức Becnuli. Dạng 25. Dùng đạo hàm để tính giới hạn dạng 0/0: limf(x) khi x→a. BÀI 4 . PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ. Dạng 26. Đưa về cùng một cơ số. Dạng 27. Đặt ẩn phụ. Dạng 28. Phương pháp hàm số. Dạng 29. Phương trình dạng hiệu các hàm đơn điệu. Dạng 30. Phép đặt ẩn phụ bậc hai u = (ab)^x/(A.a^2x + B.b^2x). Dạng 31. Phương pháp đánh giá hai vế (phương pháp bất đẳng thức). Dạng 32. Phương trình, bất phương trình mũ chứa tham số. Dạng 33. Phương trình đưa được về dạng tích. BÀI 5 . PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH LÔGARIT. Dạng 34. Đưa về cùng một cơ số. Dạng 35. Phương pháp hàm số. Dạng 36. Phương trình dạng hiệu các hàm đơn điệu. Dạng 37. Phương trình loga f(x) = logb g(x) với a khác b. Dạng 38. Sử dụng công thức đổi cơ số, phương pháp logarit hóa. Dạng 39. Sử dụng công thức a logb c = c logb a. Dạng 40. Phương pháp đánh giá hai vế (phương pháp bất đẳng thức). Dạng 41. Phương trình, bất phương trình lôgarit chứa tham số. BÀI 6 . HỆ MŨ VÀ LÔGARIT. Dạng 42. Một số hệ giải được bằng phương pháp thế. Dạng 43. Hệ mũ, lôgarit đối xứng loại 1, đối xứng loại 2. Dạng 44. Hệ có yếu tố đẳng cấp. Dạng 45. Một số hệ không mẫu mực. Dạng 46. Hệ có tham số. Dạng 47. Giải hệ bằng cách sử dụng tính đơn điệu của hàm số.

Nguồn: toanmath.com

Đọc Sách

Bất phương trình mũ không chứa tham số
Tài liệu gồm 24 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Bất phương trình mũ không chứa tham số; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. GIẢI BẤT PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP HÀM SỐ – ĐÁNH GIÁ (KHÔNG CHỨA THAM SỐ) PHƯƠNG PHÁP: Nhắc lại kiến thức cũ: Đạo hàm: ln u u a ua a. Nếu hàm số f đồng biến trên khoảng D thì xy D f x f y x y. Nếu hàm số f nghịch biến trên khoảng D thì xy D f x f y x y. Bước 1 : Đặt điều kiện của bpt (nếu có). Bước 2 : Các phương pháp giải: Phương pháp 1 : Dùng tính đơn điệu của hàm số. Phương pháp 2 : Dùng phương pháp đồ thị hàm số. Phương pháp 3 : Đánh giá. GIẢI BẤT PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP ĐẶC TRƯNG KHÔNG CHỨA THAM SỐ) PHƯƠNG PHÁP: Bước 1 : Biến đổi bất phương trình về dạng fa fb fa fb fa fb fa fb. Bước 2 : Xét hàm số y fx chứng minh hàm số luôn đồng biến hoặc luôn nghịch biến. Bước 3 : Do hàm số y fx luôn đồng biến, hoặc luôn nghịch biến suy ra fa fb a b hoặc fa fb a. GIẢI BẤT PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ KHÔNG HOÀN TOÀN (KHÔNG CHỨA THAM SỐ) PHƯƠNG PHÁP: Đặt u x T a với T > 0. Bất phương trình biến đổi về dạng 2 AT g x T h x hoặc 2 AT g x T h x. Bước 1 : Giải phương trình 2 AT g x T h x 0. Bước 2 : Lập bảng xét dấu của 2 AT g x T h x. Bước 3 : Từ bảng kết luận.
Phương trình lôgarit chứa tham số
Tài liệu gồm 14 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Phương trình lôgarit chứa tham số; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. Tìm m để f x m 0 có nghiệm (hoặc có k nghiệm) trên D trong phương trình logarit chứa tham số: Bước 1. Tách m ra khỏi biến số và đưa về dạng f x A m. Bước 2. Khảo sát sự biến thiên của hàm số f x trên D. Bước 3. Dựa vào bảng biến thiên để xác định giá trị của tham số m để đường thẳng y A m nằm ngang cắt đồ thị hàm số y f x. Bước 4. Kết luận các giá trị cần tìm của m để phương trình f x A m có nghiệm (hoặc có k nghiệm) trên D. Lưu ý: Nếu hàm số y f x có giá trị lớn nhất và giá trị nhỏ nhất trên D thì giá trị A m cần tìm là những m thỏa mãn: min max x D x D f x A m f x. Nếu bài toán yêu cầu tìm tham số để phương trình có k nghiệm phân biệt, ta chỉ cần dựa vào bảng biến thiên để xác định sao cho đường thẳng y A m nằm ngang cắt đồ thị hàm số y f x tại k điểm phân biệt. Lưu ý quan trọng: Các bước giải phương trình logarit có tham số cần chú ý: Bước 1. Đặt điều kiện (điều kiện đại số điều kiện loga) Bước 2. Dùng các công thức và biến đổi đưa về các phương trình cơ bản rồi giải. Bước 3. So với điều kiện và kết luận giá trị tham số cần tìm.
Phương trình lôgarit không chứa tham số
Tài liệu gồm 24 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Phương trình lôgarit không chứa tham số; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. GIẢI PHƯƠNG TRÌNH LÔGARIT BẰNG PHƯƠNG PHÁP HÀM SỐ – ĐÁNH GIÁ (KHÔNG CHỨA THAM SỐ) PHƯƠNG PHÁP: Vận dụng các kết quả sau: Kết quả 1 : Nếu f x là hàm số đơn điệu trên K (với K là khoảng, đoạn hoặc nửa khoảng) thì f x 0 có tối đa một nghiệm trên K. Kết quả 2 : Nếu f x là hàm số liên tục trên đoạn [a;b] và f a f b < 0 thì phương trình f x 0 có nghiệm thuộc khoảng (a;b). Kết quả 3 : Nếu f x là hàm đơn điệu trên K ab K f a f b a b. Kết quả 4 : Nếu hàm f x tăng trong khoảng (a;b) và hàm g x là hàm một hàm giảm trong khoảng (a b; ) thì phương trình f x gx có nhiều nhất một nghiệm trong khoảng (a;b). Các bước giải phương trình: Bước 1 : Tìm điều kiện xác định của phương trình. Bước 2 : Biến đổi phương trình sao cho một vế là hàm số đơn điệu, một vế là hằng số hoặc một vế là hàm đồng biến và vế còn lại là hàm số nghịch biến. Bước 3 : Nhẩm nghiệm của phương trình trên mỗi khoảng xác định (nếu có). Bước 4 : Kết luận nghiệm của phương trình. GIẢI PHƯƠNG TRÌNH LÔGARIT BẰNG PHƯƠNG PHÁP SỬ DỤNG HÀM ĐẶC TRƯNG (KHÔNG CHỨA THAM SỐ) PHƯƠNG PHÁP: Bước 1 : Đưa phương trình về dạng f ux f vx. Bước 2 : Xét hàm số y f t trên D. Tính y f t. Chứng minh hàm số y f t luôn đồng biến hoặc luôn nghịch biến trên D. Suy ra f ux f vx ux vx. GIẢI PT LÔGARIT BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ KHÔNG HOÀN TOÀN (KHÔNG CHỨA THAM SỐ) PHƯƠNG PHÁP: Phương pháp này thường được sử dụng đối với những phương trình khi lựa chọn ẩn phụ cho một biểu thức thì các biểu thức còn lại không biểu diễn được triệt để qua ẩn phụ đó hoặc nếu biểu diễn được thì công thức biểu diễn lại phức tạp.
Phương trình mũ chứa tham số
Tài liệu gồm 16 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Phương trình mũ chứa tham số; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. Phương trình một ẩn chứa tham số có dạng f x m 0 1 với m là tham số. Phương pháp biện luận số nghiệm bằng bảng biến thiên (cô lập tham số): Bước 1: Chúng ta tiến hành cô lập tham số m nghĩa là chúng ta biến đổi phương trình 1 về dạng phương trình h m g x 2 trong đó h m là biểu thức chỉ có tham số m và g x là biểu thức chỉ có biến x. Bước 2: Lập bảng biến thiến hàm g. Bước 3: Biện luận số nghiệm phương trình và kết luận. Phương pháp biện luận số nghiệm bằng tam thức bậc hai Bước 1: Biến đổi phương trình 1 về phương trình bậc hai 2 a t b t c 0 2. Bước 2 : Dựa vào định lý so sánh nghiệm với một số Bước 3 : Kết luận. Kiến thức bổ trợ : Định lý so sánh nghiệm của phương trình bậc hai với một số Xét 2 f x ax bx c có hai nghiệm 1 2 x x khi đó : x x a f 1 2. Hệ quả (so sánh nghiệm của phương trình bậc hai với hai số) Xét 2 f x ax bx c có hai nghiệm 1 2 x x khi đó : 0 a f a f x x S. Có bao nhiêu giá trị nguyên của tham số m để phương trình 2 2 1 1 1 1 4 2 .2 2 1 0 x x m m có bốn nghiệm phân biệt? Có bao nhiêu giá trị nguyên của tham số m để phương trình 2 3 3 8 3 x m x có đúng hai nghiệm phân biệt thuộc 0 10. Gọi S là tập hợp các giá trị của tham số m sao cho hai phương trình 2 2 1 3m x và 2 3 2 1 x m x x có nghiệm chung. Tính tổng các phần tử của S.