Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi thành phố Toán THCS năm 2022 2023 sở GD ĐT Hải Phòng

Nội dung Đề học sinh giỏi thành phố Toán THCS năm 2022 2023 sở GD ĐT Hải Phòng Bản PDF
Chúng tôi hân hạnh giới thiệu đến quý thầy cô giáo và các bạn học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán lớp 9 THCS năm học 2022 - 2023 do Sở Giáo dục và Đào tạo thành phố Hải Phòng tổ chức. Đề thi này bao gồm các câu hỏi thú vị và ý nghĩa, bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm.

Một trong những câu hỏi trong đề thi là về một định lí trong hình học: Cho ∆ABC nhọn không cân tại đỉnh A, nội tiếp đường tròn (O). Kẻ đường cao AH của ∆ ABC H BC. Gọi P Q lần lượt là chân đường vuông góc kẻ từ H đến các đường thẳng AB AC. Câu hỏi đề cập đến việc chứng minh tứ giác BCQP nội tiếp và các bước chứng minh liên quan đến đường thẳng PQ và BC cắt nhau tại M, đường thẳng AM cắt đường tròn (O) tại điểm K.

Đề cập đến các vấn đề khác nhau như tối ưu hóa diện tích hình vuông để chứa 5 hình tròn không chồng lên nhau, hay việc chứng minh một công thức toán học phức tạp.

Đề thi học sinh giỏi Toán lớp 9 thành phố Hải Phòng năm học 2022 - 2023 là cơ hội để các em thể hiện kiến thức và khả năng giải quyết vấn đề của mình. Chúc các em học sinh đạt kết quả cao và phấn đấu trên con đường học tập.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2023 - 2024 sở GDĐT Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thái Bình; kỳ thi được diễn ra vào ngày … tháng 12 năm 2023. Trích dẫn Đề thi học sinh giỏi Toán 9 năm 2023 – 2024 sở GD&ĐT Thái Bình : + Trên hệ trục tọa độ Oxy cho điểm hai điểm A(-1;1), B(-5;-3) và đường thẳng (d): y = ax + b. a) Tính diện tích tam giác OAB. b) Tìm a và b biết đường thẳng (d) vuông góc với đường thẳng AB và tiếp xúc với đường tròn tâm O(0;0) bán kính R = 42. + Cho tam giác ABC nhọn có AB < AC và nội tiếp đường tròn (O). Các đường cao AM, BN, CP cắt nhau tại H. Gọi K, Q lần lượt là giao điểm của NP với AH và AO, I là trung điểm của AH. 1. Chứng minh: IN2 = IK.IM. 2. Gọi E và F lần lượt là trung điểm của BN và CP. Chứng minh EF vuông góc với QM. + Cho đường thẳng (d) và đường tròn (O; R) không giao nhau. Trên đường thẳng (d) lấy điểm A. Từ điểm A kẻ tiếp tuyến AB, AC với (O; R) (B, C là tiếp điểm) và cát tuyến ADE không đi qua tâm O (D nằm giữa A và E). Gọi I là trung điểm của DE. Đường thẳng BC cắt OA và OI lần lượt tại H và K. 1. Chứng minh rằng KE là tiếp tuyến của (O; R). 2. Chứng minh rằng khi A di động trên (d) thì H di động trên một đường tròn cố định.
Đề thi HSG Toán 9 năm 2023 - 2024 phòng GDĐT thành phố Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An. Trích dẫn Đề thi HSG Toán 9 năm 2023 – 2024 phòng GD&ĐT thành phố Vinh – Nghệ An : + Chứng minh rằng với mọi số nguyên n thì: n3 + 3n2 + 2024n chia hết cho 6. b. Tìm số tự nhiên n sao cho: 3n + 19 là số chính phương. c. Cho a, b là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức: Q. + Cho nửa đường tròn tâm O, đường kính AB = 2a. Lấy điểm M bất kì trên đoạn thẳng AB (không trùng với A và B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ hai tia Mx, My sao cho AMx = BMy = 30°. Tia Mx và tia My cắt nửa đường tròn tâm O lần lượt tại E và F. Gọi P, Q theo thứ tự là hình chiếu của điểm E, F trên AB. a. Giả sử EF = a3. Tính số đo góc EOF. b. Cho AM = a/2. Tính diện tích hình thang EPQF theo a. c. Chứng minh rằng khi M di động trên đoạn thẳng AB, điểm O luôn cách đường thẳng EF một khoảng không đổi. + Cho tam giác ABC, O là giao điểm của ba đường phân giác. Qua O kẻ đường thẳng bất kỳ cắt hai cạnh AB, AC tại M, N. Giả sử điểm O cố định và khoảng cách từ O đến cạnh AB của tam giác ABC bằng 1cm. Xác định dạng của tam giác ABC và vị trí của đường thẳng MN để diện tích tam giác AMN đạt giá trị nhỏ nhất.
Đề thi HSG Toán 9 cấp thị xã năm 2023 - 2024 phòng GDĐT Đông Hòa - Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp thị xã năm học 2023 – 2024 phòng Giáo dục và Đào tạo thị xã Đông Hòa, tỉnh Phú Yên. Trích dẫn Đề thi HSG Toán 9 cấp thị xã năm 2023 – 2024 phòng GD&ĐT Đông Hòa – Phú Yên : + Tìm số tự nhiên n bé nhất để: B = n3 + 5n2 – 9n – 45 chia hết cho 2023. Tìm các nghiệm nguyên của phương trình: 5x – 3y = 2xy – 11. + Cho hình thang ABCD, đáy lớn AB. Từ D kẻ đường thẳng song song với cạnh BC, cắt đường chéo AC tại M và cắt cạnh AB tại K. Từ C kẻ đường thẳng song song với cạnh AD, cắt đường chéo BD tại I và cắt cạnh AB tại F. Qua F kẻ đường thẳng song song với AC cắt cạnh BC tại P. Chứng minh rằng: a) Tứ giác ADCF là hình bình hành và MP // AB. b) Ba điểm M, I, P thẳng hàng. c) DC2 = AB.MI. + Cho hình thoi ABCD với góc A bằng 120. Tia Ax tạo với tia AB góc BAx bằng 15° và cắt cạnh BC tại M, cắt đường thẳng CD tại N. Chứng minh rằng: 3/AM2 + 3/AN2 = 4/AB2.
Đề thi HSG Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Khoái Châu - Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Khoái Châu, tỉnh Hưng Yên; kỳ thi được diễn ra vào sáng thứ Năm ngày 23 tháng 11 năm 2023.