Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG lớp 11 môn Toán cấp trường năm 2017 2018 trường Lê Văn Thịnh Bắc Ninh

Nội dung Đề thi chọn HSG lớp 11 môn Toán cấp trường năm 2017 2018 trường Lê Văn Thịnh Bắc Ninh Bản PDF Đề thi chọn HSG Toán lớp 11 cấp trường năm 2017 – 2018 trường Lê Văn Thịnh – Bắc Ninh gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức vào ngày 7/4/2018 nhằm tuyển chọn các em học sinh giỏi môn Toán khối 11 để rèn luyện, bồi dưỡng thêm, hướng đến các kỳ thi học sinh giỏi Toán cấp cao hơn, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán lớp 11 cấp trường : + Cho đa giác lồi n cạnh nội tiếp đường tròn, biết số tam giác lập được bằng 4/7 số tứ giác lập được từ n đỉnh của đa giác đó. Tìm hệ số của x^4 trong khai triển (3 + 2x)^n. + Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AD // BC), BC = 2a, AB = AD = DC = a (a > 0). Mặt bên SBC là tam giác đều. Gọi O là giao điểm của AC và BD. Biết SD vuông góc với AC. [ads] a) Chứng minh mặt phẳng (SBC) vuông góc mặt phẳng (ABCD). Tính độ dài đoạn thẳng SD. b) Mặt phẳng (α) đi qua điểm M thuộc đoạn thẳng OD (M khác O và D) và song song với đường thẳng SD và AC. Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (α) biết MD = x. Tìm x để diện tích thiết diện lớn nhất. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh Toán lớp 11 THPT năm 2017 2018 sở Nghệ An (Bảng A)
Đề thi Olympic môn Toán lớp 11 năm 2019 cụm THPT Hà Đông Hoài Đức Hà Nội
Đề thi học sinh giỏi cấp tỉnh môn Toán lớp 11 năm 2018 2019 sở Quảng Ngãi
Đề thi học sinh giỏi cấp tỉnh môn Toán lớp 11 THPT năm 2018 2019 sở Thanh Hóa