Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện Toán 8 năm 2022 - 2023 phòng GDĐT Kỳ Anh - Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Kỳ Anh, tỉnh Hà Tĩnh. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Kỳ Anh – Hà Tĩnh : + Khi chia đa thức f(x) cho các đa thức x − 2 và x − 3 thì được dư lần lượt là 5 và 7. Nếu chia đa thức f(x) cho 2 x x 5 6 thì được thương là 2 x 1. Tìm đa thức f(x)? Cho dãy số viết theo quy luật như sau: 5; 7; 11; 19; …. Viết biểu thức biểu diễn số hạng thứ n của dãy số trên? + Xã A tổ chức giải giao hữu bóng đá theo hình thức thi đấu vòng tròn một lượt. Mỗi trận đấu, đội thắng được tính 3 điểm, đội hòa được tính 1 điểm và đội thua không có điểm nào. Kết thúc giải, Ban tổ chức nhận thấy số trận thắng gấp ba số trận hòa và tổng số điểm của các đội là 330 điểm. Hỏi có tất cả bao nhiêu đội tham gia? + Mảnh vườn có dạng hình thang biết độ dài hai đáy lần lượt là 5m, 15m và độ dài hai đường chéo lần lượt là 16m và 12m. Tính diện tích mảnh vườn trên? Cho tam giác ABC có trung tuyến AM. Đường thẳng bất kỳ đi qua trọng tâm G cắt các cạnh AB và AC thứ tự tại E và F. Tính giá trị của biểu thức AB AC AE AF.

Nguồn: toanmath.com

Đọc Sách

Đề thi Olympic Toán 8 cấp huyện năm 2020 - 2021 phòng GDĐT Ba Vì - Hà Nội
Thứ Năm ngày 22 tháng 04 năm 2021, phòng GD&ĐT huyện Ba Vì, thành phố Hà Nội tổ chức kỳ thi Olympic cấp huyện môn Toán lớp 8 năm học 2020 – 2021. Đề thi Olympic Toán 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi Olympic Toán 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội : + Tìm các số nguyên x, y thỏa mãn: xy – 4 = 2x + 3y. + Tìm các số nguyên x sao cho A = x(x – 1)(x – 7)(x – 8) là một số chính phương. + Cho hình thoi ABCD có BAD = 60°. Qua C vẽ đường thẳng d bất kì không cắt cạnh của hình thoi ABCD, nhưng d cắt tia AB tại E và cắt tia AD tại F. a) Chứng minh BCE đồng dạng DFC. b) Chứng minh BD2 = BE.DF. c) Gọi I là giao điểm của BF và DE. Tính số đo góc EIF.
Đề thi Olimpic Toán 8 năm 2020 - 2021 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olimpic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội. Trích dẫn đề thi Olimpic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội : + Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết cho 48. + Một mảnh đất hình thang ABCD có AB//CD, AB = BC = AD = a, CD = 2a. a/ Tính các góc của hình thang ABCD. b/ Tính diện tích của hình thang ABCD theo a. c/ Hãy chia mảnh đất ABCD thành 4 mảnh đất hình thang giống hệt nhau bằng nhau. + Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD = AB, CE = 1/3.AC, CD và BE cắt nhau tại I. Tính các tỷ số.
Đề thi Olympic Toán 8 năm 2020 - 2021 phòng GDĐT Gia Lâm - Hà Nội
Đề thi Olympic Toán 8 năm 2020 – 2021 phòng GD&ĐT Gia Lâm – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2021.
Đề thi HSG huyện Toán 8 năm 2020 - 2021 phòng GDĐT Hà Trung - Thanh Hóa
Thứ Sáu ngày 09 tháng 04 năm 2021, phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa tổ chức kỳ thi giao lưu học sinh giỏi các môn văn hóa lớp 8 cấp huyện năm học 2020 – 2021. Đề thi HSG huyện Toán 8 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG huyện Toán 8 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa : + Cho tam giác đều ABC. Gọi O là trung điểm của BC. Trên cạnh AB và AC lần lượt lấy các điểm di động M và N sao cho MON = 600. Chứng minh rằng: 1) OMB đồng dạng với ONC từ đó suy ra tích BM.CN không đổi. 2) Các tia MO, NO lần lượt là tia phân giác của góc BMN và CNM. 3) Chu vi tam giác AMN không đổi. + Xác định đa thức f(x) biết: f(x) chia cho x – 1 dư 4; chia cho x + 2 dư 1 và chia cho x2 + x – 2 được thương là 5x. + Tìm số tự nhiên k để 4 7 2 2 2 k là số chính phương.