Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề hệ phương trình bậc nhất hai ẩn chứa tham số

Tài liệu gồm 10 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hệ phương trình bậc nhất hai ẩn chứa tham số trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. Cho hệ phương trình bậc nhất hai ẩn: ax + by = c và a’x + b’y = c’ (*). 1. Để giải hệ phương trình (*) ta thường dùng phương pháp thế hoặc cộng đại số. 2. Từ hai phương trình của hệ phương trình (*), sau khi dùng phương pháp thế hoặc cộng đại số, ta thu được một phương trình mới (một ẩn). Khi đó số nghiệm của phương trình mới bằng số nghiệm của hệ phương trình đã cho. 3. Chú ý: Cách biện luận số nghiệm phương trình bậc nhất một ẩn ax + b = 0. – Nếu a ≠ 0 thì phương trình có nghiệm x = -b/a. – Nếu a = 0 ta được: 0x = -b. +) Nếu b = 0 thì phương trình có vô số nghiệm. +) Nếu b ≠ 0 thì phương trình vô nghiệm. B. Bài tập và các dạng toán. Dạng 1 : Giải và biện luận hệ phương trình. Cách giải: Để giải và biện luận hệ phương trình (*) ta làm như sau: + Bước 1: Từ hai phương trình (*), sau khi dùng phương pháp thế hoặc cộng đại số, ta thu được một phương trình mới (chỉ còn một ẩn). + Bước 2: Giải và biện luận phương trình mới, từ đó đi đến kết luận về giải và biện luận hệ phương trình đã cho. Dạng 2 : Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước. Cách giải: Một số bài toán thường gặp của dạng này là: + Bài toán 1: Tìm điều kiện nguyên của tham số để hệ phương trình có nghiệm (x;y) trong đó x và y cùng là những số nguyên. + Bài toán 2: Tìm điều kiện của tham số để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn hệ thức cho trước. BÀI TẬP VỀ NHÀ.

Nguồn: toanmath.com

Đọc Sách

Giải bài toán chứa căn Nguyễn Tiến
Nội dung Giải bài toán chứa căn Nguyễn Tiến Bản PDF - Nội dung bài viết Giải bài toán chứa căn Nguyễn Tiến - Tài liệu tổng hợp kiến thức căn thức cho học sinh lớp 9 Giải bài toán chứa căn Nguyễn Tiến - Tài liệu tổng hợp kiến thức căn thức cho học sinh lớp 9 Tài liệu "Giải bài toán chứa căn" được biên soạn bởi thầy giáo Nguyễn Tiến, gồm 89 trang nhằm giúp học sinh lớp 9 nắm vững phương pháp giải các bài toán chứa căn. Tài liệu tập trung vào các dạng bài tập căn thức cơ bản, phù hợp với đối tượng học sinh cần củng cố kiến thức và ôn tập chuẩn bị cho kỳ thi vào lớp 10. Tài liệu được chia thành nhiều phần, từ việc tìm hiểu về căn bậc hai, đến điều kiện xác định biểu thức có nghĩa và các bài toán rút gọn biểu thức chứa căn. Các dạng toán chứa căn được phân loại rõ ràng, từ dạng đơn giản đến phức tạp, giúp học sinh hiểu rõ vấn đề và rèn luyện kỹ năng giải toán. Đặc biệt, tài liệu cũng cung cấp các bài tập tổng hợp phong phú và hướng dẫn giải chi tiết, giúp học sinh rèn luyện kỹ năng giải toán căn thức một cách hiệu quả. Bên cạnh đó, có cả các bài toán phụ yêu cầu tư duy linh hoạt và sáng tạo từ học sinh. Trên cơ sở nội dung này, học sinh sẽ có cơ hội nắm vững kiến thức căn thức, rèn luyện tư duy logic và xây dựng nền tảng vững chắc cho việc học toán ở cấp độ cao hơn.
Chuyên đề cực trị Hình học 9
Nội dung Chuyên đề cực trị Hình học 9 Bản PDF - Nội dung bài viết Chuyên đề cực trị Hình học 9 Chuyên đề cực trị Hình học 9 Tài liệu "Chuyên đề cực trị Hình học 9" bao gồm 21 trang hướng dẫn phương pháp giải bài toán cực trị Hình học 9. Đây là những bài toán nâng cao thường xuất hiện trong đề thi Toán lớp 9. Nội dung của tài liệu sẽ giúp học sinh hiểu rõ hơn về cách giải các bài toán cực trị trong Hình học và chuẩn bị tốt cho kỳ thi cuối kỳ.
Sơ đồ tư duy lớp 9 môn Toán
Nội dung Sơ đồ tư duy lớp 9 môn Toán Bản PDF - Nội dung bài viết Sytu giới thiệu bộ Sơ đồ tư duy Toán lớp 9: Đại số 9 và Hình học 9 Sytu giới thiệu bộ Sơ đồ tư duy Toán lớp 9: Đại số 9 và Hình học 9 Sytu xin giới thiệu đến quý độc giả bộ sơ đồ tư duy Toán lớp 9, bao gồm cả Đại số 9 và Hình học 9. Học Toán thông qua sơ đồ tư duy là một phương pháp học tập hiện đại, giúp học sinh dễ dàng ghi nhớ và hiểu sâu hơn về các kiến thức Toán. Những kiến thức Toán lớp 9 được biểu diễn trong các hình ảnh sinh động, giúp học sinh nhận ra mối quan hệ logic giữa chúng. Bộ sơ đồ tư duy Toán lớp 9 bao gồm nhiều chủ đề, bao gồm: Sơ đồ tư duy về căn bậc hai và căn bậc ba Sơ đồ tư duy về hàm số Sơ đồ tư duy về tam giác Sơ đồ tư duy về tứ giác Sơ đồ tư duy về đường tròn Qua bộ sơ đồ tư duy Toán lớp 9, học sinh sẽ tiếp cận môn Toán một cách mạch lạc, thú vị hơn, từ đó nâng cao hiệu suất học tập của mình và phát triển tư duy logic và sáng tạo trong việc giải quyết các bài toán. Hãy cùng Sytu trải nghiệm bộ sơ đồ tư duy độc đáo này để khám phá vẻ đẹp và logic của môn Toán!
Tài liệu ôn thi cấp tốc Đại số 9 Huỳnh Đức Khánh
Nội dung Tài liệu ôn thi cấp tốc Đại số 9 Huỳnh Đức Khánh Bản PDF - Nội dung bài viết Tài liệu ôn thi cấp tốc Đại số 9 Huỳnh Đức Khánh Tài liệu ôn thi cấp tốc Đại số 9 Huỳnh Đức Khánh Bạn đang cần một tài liệu ôn thi cấp tốc Đại số 9 để nắm vững kiến thức Toán lớp 9? Tài liệu của chúng tôi có thể đáp ứng nhu cầu của bạn. Với 29 trang tài liệu tuyển chọn các bài tập điển hình trong các nội dung Đại số 9, bạn sẽ được hỗ trợ mạnh mẽ trong việc ôn tập. Nội dung của tài liệu được chia thành 7 phần chính: Phần 1: Rút gọn căn số - Giúp bạn rèn luyện kỹ năng rút gọn căn số một cách nhanh chóng và chính xác. Phần 2: Rút gọn biểu thức - Hướng dẫn cách rút gọn biểu thức để giải bài tập hiệu quả. Phần 3: Hàm số bậc nhất - Bài tập về hàm số bậc nhất giúp bạn hiểu rõ hơn về đồ thị và các tính chất của hàm số. Phần 4: Hệ phương trình bậc nhất hai ẩn - Bài tập hệ phương trình sẽ giúp bạn rèn luyện cách giải các bài toán phức tạp. Phần 5: Hàm số bậc hai - Tập trung vào hàm số bậc hai, giúp bạn hiểu rõ về đồ thị và hình dạng của hàm số. Phần 6: Phương trình bậc hai - Bài tập về phương trình bậc hai để bạn có thể giải các bài toán liên quan đến phương trình. Phần 7: Giải bài toán bằng cách lập phương trình - lập hệ phương trình - Bài tập hướng dẫn giải bài toán bằng cách lập phương trình và lập hệ phương trình trong các tình huống khác nhau như bài toán hình học, bài toán vận tốc, bài toán công nhân làm việc và nhiều bài toán khác. Với tài liệu này, bạn sẽ có cơ hội nắm vững kiến thức và rèn luyện kỹ năng giải bài tập một cách hiệu quả. Hãy tận dụng tài liệu này để chuẩn bị tốt cho kỳ thi của mình!