Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh Toán 12 THPT năm 2019 - 2020 sở GDĐT Gia Lai

Ngày 13 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Gia Lai tổ chức kỳ thi tuyển chọn học sinh giỏi (HSG) cấp tỉnh môn Toán lớp 12 THPT năm học 2019 – 2020. Đề thi học sinh giỏi tỉnh Toán 12 THPT năm 2019 – 2020 sở GD&ĐT Gia Lai được dành cho học sinh bảng B gồm có 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 THPT năm 2019 – 2020 sở GD&ĐT Gia Lai : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD. Gọi H là hình chiếu vuông góc của B lên AC, M và N lần lượt là trung điểm của đoạn AH và BH. Trên cạnh CD lấy điểm N sao cho tứ giác MNCK là hình bình hành. Biết M(9/5;2/5), K(9;2), điểm B thuộc d1: 2x – y + 2 = 0, điểm C thuộc d2: x – y – 5 = 0 và hoành độ đỉnh C lớn hơn 4. Tìm tọa độ các định của hình chữ nhật ABCD. [ads] + Cho tứ diện ABCD có thể tích V. Gọi I là điểm thuộc miền trong của tứ diện ABCD, các đường thẳng AI, BI, CI, DI lần lượt cắt các mặt phẳng (BCD), (ACD), (ABD), (ABC) tại các điểm M, N, P, Q thỏa mãn AI/MI = BI/NI = CI/PI = DI/QI. Biết V_IBCD = a/b.V với a, b thuộc N* và a/b tối giản. Tính S = a + b. + Cho tam giác ABC có sinA + sinC = 2sinB và tanA/2 + tanC/2 = 2√3/3. Chứng minh rằng tam giác ABC đều.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2023 - 2024
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2023 – 2024; kỳ thi được diễn ra vào ngày 05/01/2024 và 06/01/2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2023 – 2024 : + Cho ABC là tam giác nhọn với tâm đường tròn ngoại tiếp O. Gọi A0 là tâm của đường tròn đi qua C và tiếp xúc với AB tại A, B0 là tâm của đường tròn đi qua A và tiếp xúc với BC tại B C 0 là tâm của đường tròn đi qua B và tiếp xúc với CA tại C. a) Chứng minh rằng diện tích tam giác A0B0C0 lớn hơn hoặc bằng diện tích tam giác ABC. b) Gọi X, Y, Z lần lượt là hình chiếu vuông góc của O lên các đường thẳng A0B0 B0C0 C0A0. (XYZ) cắt lại A0B0 B0C0 C0A0 tại X0 Y0 Z0. Chứng minh rằng AX0 BY0 CZ0 đồng quy. + Người ta xếp k viên bi vào các ô của một bảng 2024 × 2024 ô vuông sao cho hai điều kiện sau được thỏa mãn: mỗi ô không có quá một viên bi và không có hai viên bi nào được xếp ở hai ô kề nhau (hai ô được gọi là kề nhau nếu chúng có chung một cạnh). a) Cho k = 2024. Hãy chỉ ra một cách xếp thỏa mãn cả hai điều kiện trên mà khi chuyển bất kì viên bi đã được xếp nào sang một ô tùy ý kề với nó thì cách xếp mới không còn thỏa mãn cả hai điều kiện nêu trên. b) Tìm giá trị k lớn nhất sao cho với mọi cách xếp k viên bi thỏa mãn hai điều kiện trên ta có thể chuyển một trong số các viên bi đã được xếp sang một ô kề với nó mà cách xếp mới vẫn không có hai viên bi nào được xếp ở hai ô kề nhau. + Trong không gian, cho đa diện lồi D sao cho tại mỗi đỉnh của D có đúng một số chẵn các cạnh chứa đỉnh đó. Chọn ra một mặt F của D. Giả sử ta gán cho mỗi cạnh của D một số nguyên dương sao cho điều kiện sau được thỏa mãn: với mỗi mặt (khác mặt F) của D, tổng các số được gán với các cạnh của mặt đó là một số nguyên dương chia hết cho 2024. Chứng minh rằng tổng các số được gán với các cạnh của mặt F cũng là một số nguyên dương chia hết cho 2024.
Đề thi chọn HSG Toán 12 năm 2023 - 2024 trường THPT Bắc Sơn - Lạng Sơn
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp trường môn Toán 12 năm học 2023 – 2024 trường THPT Bắc Sơn, tỉnh Lạng Sơn; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 12 năm 2023 – 2024 trường THPT Bắc Sơn – Lạng Sơn : + Lập được bao nhiêu số tự nhiên lẻ gồm 4 chữ số đôi một khác nhau. Lập được bao nhiêu số chẵn gồm 5 chữ số đôi một khác nhau trong đó có hai chữ số lẻ và hai chữ số lẻ đứng cạnh nhau. + Cho hình chóp S.ABC có đáy ABC là tam giác đều SA ABC. Mặt phẳng (SBC) cách A một khoảng bằng a và hợp với mặt phẳng (ABC) góc 0 30. Tính thể tích của khối chóp S.ABC. + Một đội công nhân xây dựng phải xây một bể nước dạng hình hộp chữ nhật có thể tích 3(m3). Tỉ số giữa chiều cao của bể và chiều rộng của đáy bằng 4. Biết rằng bể nước chỉ có các mặt bên và mặt đáy (tức không có mặt trên). Tính chiều dài của đáy để người thợ xây tốn ít nguyên vật liệu nhất.
Đề thi học sinh giỏi thành phố Toán 12 năm 2023 - 2024 sở GDĐT Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp thành phố môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào ngày 30 tháng 09 năm 2023. Trích dẫn Đề thi học sinh giỏi thành phố Toán 12 năm 2023 – 2024 sở GD&ĐT Hà Nội : + Cho hàm số y = 2×3 – 3(2m – 1)x2 – 12mx có đồ thị (Cm) với m là tham số thực. 1) Khi m = 1, viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến cắt các trục Ox, Oy lần lượt tại hai điểm phân biệt M và N sao cho ON = 24OM. 2) Tìm tất cả các giá trị của m để (Cm) có hai điểm cực trị nằm về hai phía so với trục hoành. + Xét tập hợp S gồm tất cả các bộ số (x;y;z) với x, y, z là các số nguyên dương không lớn hơn 30. 1) Hỏi có bao nhiêu bộ số (x;y;z) thuộc tập hợp S thỏa mãn x + y + z = 5? 2) Lấy ngẫu nhiên một bộ số (a;b;c) từ tập hợp S. Tính xác suất để lấy được bộ số thỏa mãn a + b + c < 30. + Cho hình chóp S.ABC có cạnh bên SA vuông góc với mặt phẳng (ABC), biết SA = 3 và tam giác SBC là tam giác đều có cạnh bằng 4. 1) Tính số đo của góc giữa mặt phẳng (SBC) và mặt phẳng (ABC). 2) Cho điểm I xác định bởi 2IA + 3IB + 4IC = 0. Xét mặt phẳng (a) thay đổi đi qua trung điểm của đoạn thẳng SI và cắt các tia SA, SB, SC lần lượt tại các điểm M, N, P (với M, N, P không trùng với S). Tìm giá trị nhỏ nhất của biểu thức T = 4/SM² + 9/SN² + 16/SP².
Tuyển tập đề thi học sinh giỏi Toán 12 sở GDĐT Quảng Bình (2013 - 2023)
Tài liệu gồm 76 trang, được tổng hợp bởi thầy giáo Nguyễn Minh Hiếu, tuyển tập 10 đề thi chọn học sinh giỏi môn Toán lớp 12 sở Giáo dục và Đào tạo tỉnh Quảng Bình (từ năm 2013 đến năm 2023), có đáp án và lời giải chi tiết. Mục lục : PHẦN I . ĐỀ THI 1. 1 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2022 – 2023 (Trang 3). 2 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2021 – 2022 (Trang 8). 3 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2020 – 2021 (Trang 9). 4 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2019 – 2020 (Trang 10). 5 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2018 – 2019 (Trang 11). 6 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2017 – 2018 (Trang 12). 7 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2016 – 2017 (Trang 13). 8 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2015 – 2016 (Trang 14). 9 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2014 – 2015 (Trang 15). 10 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2013 – 2014 (Trang 16). PHẦN II . LỜI GIẢI 17. 1 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2022 – 2023 (Trang 19). 2 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2021 – 2022 (Trang 35). 3 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2020 – 2021 (Trang 39). 4 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2019 – 2020 (Trang 43). 5 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2018 – 2019 (Trang 47). 6 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2017 – 2018 (Trang 52). 7 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2016 – 2017 (Trang 56). 8 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2015 – 2016 (Trang 61). 9 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2014 – 2015 (Trang 65). 10 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2013 – 2014 (Trang 69).