Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo tuyển sinh 10 môn Toán 2024 - 2025 phòng GDĐT Quận 7 - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 môn Toán năm học 2024 – 2025 phòng Giáo dục và Đào tạo Quận 7, thành phố Hồ Chí Minh; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tham khảo tuyển sinh 10 môn Toán 2024 – 2025 phòng GD&ĐT Quận 7 – TP HCM : + Một cửa hàng trà sữa có chương trình khuyến mãi: giảm 20% cho 1 ly trà sữa có giá bán ban đầu là 45 000 đồng/ly. Nếu khách hàng mua từ ly thứ 10 trở lên thì từ ly thứ 10 mỗi ly được giảm thêm 10% trên giá đã giảm. Hỏi một học sinh đặt mua 30 ly trà sữa ở cửa hàng thì phải trả tất cả bao nhiêu tiền? + Một cái tháp được dựng bên bờ một con sông, từ một điểm đối diện với tháp ngay bờ bên kia người ta nhìn thấy đỉnh tháp với góc nâng 600. Từ một điểm khác cách điểm ban đầu 20 m người ta cũng nhìn thấy đỉnh tháp với góc nâng 300 (Hình minh họa). Tính chiều cao của tháp. (Làm tròn đến mét). + Cước điện thoại y (nghìn đồng) là số tiền mà người sử dụng điện thoại cần trả hàng tháng, nó phụ thuộc vào lượng thời gian gọi x (phút) của người đó trong tháng. Mối liên hệ giữa hai đại lượng này là một hàm số bậc nhất y ax b. Hãy tìm a b biết rằng nhà bạn An trong tháng 5 đã gọi 100 phút với số tiền là 40 nghìn đồng và trong tháng 6 gọi 40 phút với số tiền là 28 nghìn đồng.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán vào lớp 10 lần 1 năm 2024 - 2025 phòng GDĐT Tân Kỳ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 lần 1 năm 2024 – 2025 phòng GD&ĐT Tân Kỳ – Nghệ An : + Cho phương trình bậc hai 2 x 5 6 0 x có hai nghiệm phân biệt 1 2 x. Không giải phương trình hãy tính giá trị của biểu thức 5 x T. + Trong kỳ thi tuyển sinh vào lớp 10 của một trường THCS có 110 học sinh dự thi. Biết rằng 1 4 số học sinh trúng tuyển nhiều hơn 1 5 số học sinh không trúng tuyển là 23 học sinh. Tính số học sinh trúng tuyển và số học sinh không trúng tuyển của trường đó? + Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Tia AO cắt (O) tại K. Gọi M là trung điểm của BC. a) Chứng minh BDHF là tứ giác nội tiếp. b) Chứng minh AB AC R AD và M là trung điểm của KH. c) Đường thẳng EF cắt tiếp tuyến tại B, C của (O) lần lượt tại P, Q. BE, CF cắt (O) lần lượt tại N, I. Giả sử QN cắt (O) tại L Chứng minh P, I, L thẳng hàng.
Đề thi thử Toán vào 10 lần 1 năm 2024 - 2025 trường THCS Quỳnh Phương - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 trường THCS Quỳnh Phương, thị xã Hoàng Mai, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2024 – 2025 trường THCS Quỳnh Phương – Nghệ An : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Nhân ngày sách và văn hóa đọc Việt Nam 21/4/2023, một nhà sách đã có chương trình giảm giá. Bạn An đến mua một quyển sách Toán và một quyển sách Tiếng Anh với tổng giá ghi trên hai quyển sách đó là 150000 đồng. Nhưng quyển sách Toán được giảm giá 20%, quyển sách Tiếng Anh được giảm giá 35% nên An chỉ phải trả tổng số tiền là 108000 đồng. Hỏi giá ghi trên mỗi quyển sách là bao nhiêu? + Nhà An có một cái bể chứa nước hình trụ có đường kính đáy (không tính thành bể) là 1,8m, chiều cao (không tính đáy bể) là 2,5m. Sau khi tháo cạn và dọn sạch bể An dùng máy bơm với lưu lượng nước 3m3/h để bơm nước từ giếng lên bể. An dự tính máy bơm trong thời gian 1,5 giờ sẽ đầy bể. Em hãy tính xem dự tính của An đúng hay sai? (với π ≈ 3,14). + Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn tâm O, bán kính R. Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC. a) Chứng minh rằng AEHF là tứ giác nội tiếp đường tròn. b) Vẽ đường kính AK của đường tròn (O). Chứng minh: AB.AC = 2R.AD. c) Chứng minh rằng OC vuông góc với DE.
Đề thi thử Toán vào lớp 10 lần 1 năm 2024 - 2025 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND huyện Thanh Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2024. Trích dẫn Đề thi thử Toán vào lớp 10 lần 1 năm 2024 – 2025 phòng GD&ĐT Thanh Oai – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai tổ sản xuất khẩu trang trong một ngày làm được 5000 chiếc. Để đáp ứng nhu cầu khẩu trang trong phòng chống dịch cúm, mỗi ngày tổ I sản xuất vượt mức 20%, tổ II vượt mức 30%, do đó cả hai tổ mỗi ngày sản xuất được 6300 chiếc khâu trang. Hỏi ban đầu trong một ngày mỗi tổ sản xuất được bao nhiêu chiếc khẩu trang? 2. Một bể bơi có chiều dài 50m, chiều rộng 25 m và chiều cao 2,3m. Người ta bơm nước vào bể sao cho cách mép bể là 0,5m. Tính thể tích nước trong bể. + Cho nửa đường tròn (O) đường kính AB = 2R. Qua điểm M thuộc nửa đường tròn, kẻ tiếp tuyến với đường tròn và gọi I, K theo thứ tự là chân các đường vuông góc kẻ từ A, B đến tiếp tuyến ấy. a. So sánh các độ dài MI và MK. b. Chứng minh rằng AB = AI + BK. c. Chứng minh AM là tia phân giác của góc OAI và AB là tiếp tuyến của đường tròn đường kính IK. d. Tính diện tích lớn nhất của tứ giác ABKI.
Đề thi thử Toán vào lớp 10 lần 1 năm 2024 - 2025 phòng GDĐT Thái Hòa - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo thị xã Thái Hòa, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 lần 1 năm 2024 – 2025 phòng GD&ĐT Thái Hòa – Nghệ An : + Hai lớp 9A và 9B có tổng cộng 95 học sinh. Trong đợt quyên góp vở ủng hộ các bạn học sinh nghèo, bình quân mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 4 quyển. Vì vậy cả hai lớp đã ủng hộ được 330 quyển. Tính số học sinh của mỗi lớp. + Các tia nắng mặt trời tạo với mặt đất một góc xấp xỉ bằng 31° và bóng của một cây trên mặt đất dài 20 m (xem hình vẽ bên). Tính chiều cao của cây (làm tròn kết quả đến mét). + Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Trên cung nhỏ BC lấy điểm D sao cho CD BD tia AD cắt đường tròn (O) tại điểm thứ hai là E. Gọi I là trung điểm của DE và K là giao điểm của BC và DE. 1) Chứng minh ABOI là tứ giác nội tiếp. 2) Chứng minh OIB OAC và AK AI AD AE. 3) Qua D kẻ đường thẳng song song với AB, đường thẳng này cắt BC tại điểm M. Đường thẳng ME lần lượt cắt đường tròn (O) và đường thẳng AB tại các điểm P và N (P khác E). Chứng minh rằng APN ICB.