Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán (chuyên) vào 10 năm 2023 2024 trường chuyên Lam Sơn Thanh Hóa

Nội dung Đề khảo sát Toán (chuyên) vào 10 năm 2023 2024 trường chuyên Lam Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề khảo sát Toán (chuyên) vào lớp 10 năm 2023 - 2024 tại trường chuyên Lam Sơn Thanh Hóa Đề khảo sát Toán (chuyên) vào lớp 10 năm 2023 - 2024 tại trường chuyên Lam Sơn Thanh Hóa Xin chào quý thầy cô và các em học sinh lớp 9! Sytu hân hạnh giới thiệu đến các bạn đề thi khảo sát chất lượng môn Toán (chuyên) để ôn thi tuyển sinh vào lớp 10 THPT năm học 2023 - 2024 tại trường THPT chuyên Lam Sơn, Thanh Hóa. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 16 tháng 04 năm 2023. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Ví dụ về nội dung trong đề thi: Cho các số thực dương x, y thỏa mãn: \(2x + \frac{xy}{3} = 10\) và \(2y + \frac{xy}{6} = 6\). Tính \(A = x + y + 3\). Cho tam giác ABC nhọn có AB = AC, nội tiếp đường tròn O. Phân giác trong của \(\angle BAC\) cắt BC tại D và cắt O tại Q. Từ D, dựng DE, DF lần lượt vuông góc với AC, AB. Gọi M là trung điểm của BC, tia QM cắt O tại giao điểm thứ hai là P. Chứng minh \(QM = QP = QD = QA\). Gọi N là giao điểm của PD và EF. Chứng minh MN song song với AD. Dựng đường kính AK của O. Các đường tròn ngoại tiếp các tam giác BFN và CEN cắt nhau tại điểm R. Chứng minh các điểm P, D, R thẳng hàng. Xét một bảng ô vuông cỡ 8x8 gồm 64 ô vuông. Chứng minh với mọi cách đánh dấu 7 ô vuông của bảng, ta luôn tìm được một hình chữ nhật gồm 8 ô vuông mà không có ô nào bị đánh dấu. Với các câu hỏi đa dạng và phong phú, hy vọng đề thi sẽ giúp các em ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10. Chúc quý thầy cô và các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào 10 lần 3 năm 2022 trường THCS Quỳnh Mai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán 9 ôn tập tuyển sinh vào lớp 10 THPT lần 3 năm học 2021 – 2022 trường THCS Quỳnh Mai, quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022. Trích dẫn đề thi thử Toán vào 10 lần 3 năm 2022 trường THCS Quỳnh Mai – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: 1) Một mảnh vườn hình chữ nhật có diện tích 216m2. Nếu giảm chiều rộng 2m và tăng chiều dài 2m thì diện tích mảnh vườn giảm 16m2. Tính chiều dài và chiều rộng ban đầu của mảnh vườn. + Một cái bồn chứa xăng gồm hai nửa hình cầu và một hình trụ. Hãy tính thể tích của bồn chứa theo các kích thước cho trên hình vẽ (lấy pi = 3,14; làm tròn kết quả đến chữ số thập phân thứ ba). + Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x – 2m + 3. a) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1 và x2. b) Tìm m để hoành độ giao điểm thỏa mãn: x1 =< 0 < x2.
Đề thi vào 10 môn Toán (chuyên) 2022 - 2023 trường chuyên Hoàng Văn Thụ - Hoà Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Hoàng Văn Thụ, tỉnh Hoà Bình (đề thi dành cho thí sinh thi vào các lớp chuyên Toán); kỳ thi được diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022. Trích dẫn đề thi vào 10 môn Toán (chuyên) 2022 – 2023 trường chuyên Hoàng Văn Thụ – Hoà Bình : + Một cửa hàng điện máy thực hiện chương trình khuyến mãi giảm giá tất cả các mặt hàng 10% theo giá niêm yết và nếu hóa đơn khách hàng trên 10 triệu sẽ được giảm thêm 2% số tiền trên hóa đơn, hóa đơn trên 15 triệu sẽ được giảm thêm 4% số tiền trên hóa đơn, hóa đơn trên 40 triệu sẽ được giảm thêm 8% số tiền trên hóa đơn. Ông An muốn mua một ti vi với giá niêm yết là 9 200 000 đồng và một tủ lạnh với giá niêm yết là 7 100 000 đồng. Hỏi với chương trình khuyến mãi của cửa hàng, ông An phải trả bao nhiêu tiền? + Cho tam giác ABC vuông tại B (BC AB) nội tiếp trong đường tròn tâm O đường kính AC R 2. Kẻ dây cung BD vuông góc với AC, H là giao điểm của AC và BD. Trên HC lấy điểm E sao cho E đối xứng với A qua H. Đường tròn tâm O’ đường kính EC cắt đoạn BC tại I (I khác C). 1) Chứng minh rằng: CI CA CE CB. 2) Chứng minh rằng: Ba điểm D, I, E thẳng hàng. 3) Chứng minh rằng: HI là tiếp tuyến của đường tròn đường kính EC. 4) Khi B thay đổi thì H thay đổi, xác định vị trí của H trên AC để diện tích tam giác O’IH lớn nhất. + Cho phương trình: 2 x mx m 2 2 1 0 (m là tham số). Tìm m để phương trình có hai nghiệm dương.
Đề thi vào 10 môn Toán (chung) 2022 - 2023 trường chuyên Hoàng Văn Thụ - Hoà Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022 – 2023 trường THPT chuyên Hoàng Văn Thụ, tỉnh Hoà Bình (đề thi dành cho tất cả các thí sinh); kỳ thi được diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022. Trích dẫn đề thi vào 10 môn Toán (chung) 2022 – 2023 trường chuyên Hoàng Văn Thụ – Hoà Bình : + Một ô tô đi từ A và dự định đến B lúc 11 giờ trưa. Nếu xe chạy với vận tốc 40 km/h thì sẽ đến B chậm 1 giờ so với dự định. Nếu xe chạy với vận tốc 50 km/h thì sẽ đến B sớm 24 phút so với dự định. Tính độ dài quãng đường AB và thời điểm dự định xuất phát của ô tô tại A. + Cho đường tròn O một đường thẳng d không đi qua tâm O cắt đường tròn O tại hai điểm phân biệt M và N. Lấy điểm A tùy ý thuộc d và nằm ngoài đường tròn O AM AN. Qua A vẽ hai tiếp tuyến AB và AC của đường tròn O (B và C là các tiếp điểm). Gọi D là giao điểm của AO và BC. 1) Chứng minh rằng: Tứ giác OBAC là tứ giác nội tiếp. 2) Chứng minh rằng: 2 AB AM AN. 3) Chứng minh rằng: ADM ANO. 4) Chứng minh rằng khi A thay đổi (A thuộc d và nằm ngoài đường tròn O AM AN) thì đường thẳng BC luôn đi qua một điểm cố định. + Cho tam giác ABC vuông tại A, đường cao AH, biết AB cm 6 AC cm 8. Tính độ dài AH, BH, CH.
Đề thi thử Toán vào lớp 10 lần 2 năm 2022 - 2023 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quốc Oai, thành phố Hà Nội. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2022 – 2023 phòng GD&ĐT Quốc Oai – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một cơ sở sản xuất lập kế hoạch làm 600 sản phẩm trong một thời gian nhất định. Do cải tiến kĩ thuật, năng suất mỗi ngày tăng 10 sản phẩm. Vì thế không những hoàn thành sớm kế hoạch 1 ngày, mà còn vượt mức 100 sản phẩm. Hỏi theo kế hoạch mỗi ngày phải làm bao nhiêu sản phẩm. + Một chiếc thùng hình trụ có đường kính đáy là 40cm được đựng đầy nước. Sau khi múc ra 30 lít nước thì còn lại 2/3 thùng. Tính chiều cao của thùng (lấy pi = 3,14 và làm tròn đến đơn vị cm). + Trong mặt phẳng tọa độ, cho Parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x – m2 + 3 (với m là tham số) a. Tìm m để (d) tiếp xúc với (P). Khi đó tìm tọa độ tiếp điểm. b. Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ thỏa mãn.