Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng hàm số lượng giác và phương trình lượng giác Toán 11 CTST

Tài liệu gồm 196 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm tóm tắt kiến thức cơ bản cần nắm, phân loại và phương pháp giải bài tập chuyên đề hàm số lượng giác và phương trình lượng giác trong chương trình môn Toán 11 Chân Trời Sáng Tạo (CTST). MỤC LỤC : BÀI 1 . GÓC LƯỢNG GIÁC 4. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 4. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 6. Dạng 1. Đơn vị đo độ và rađian 6. 1. Phương pháp 6. 2. Các ví dụ minh họa 6. Dạng 2. Biểu diễn cung lượng giác trên đường tròn lượng giác 6. 1. Phương pháp 6. 2. Các ví dụ minh họa 7. Dạng 3. Độ dài của một cung tròn 8. 1. Phương pháp giải 8. 2. Các ví dụ minh họa 8. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA BÀI TẬP 9. D. BÀI TẬP TRẮC NGHIỆM 15. BÀI 2 . GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC LƯỢNG GIÁC 25. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 25. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 28. Dạng 1. Tính giá trị của góc còn lại hoặc của một biểu thức lượng giác khi biết một giá trị lượng giác 28. 1. Phương pháp giải 28. 2. Các ví dụ minh họa 28. Dạng 2. Xác định giá trị của biểu thức chứa góc đặc biệt, góc liên quan đặc biệt và dấu của giá trị lượng giác của góc lượng giác 31. 1. Phương pháp giải 31. 2. Các ví dụ minh họa 31. Dạng 3. Chứng minh đẳng thức lượng giác, chứng minh biểu thức không phụ thuộc góc x, đơn giản biểu thức 33. 1. Phương pháp giải 33. 2. Các ví dụ minh họa 33. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 36. D. BÀI TẬP TRẮC NGHIỆM 41. BÀI 3 . CÁC CÔNG THỨC LƯỢNG GIÁC 66. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 66. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 66. Dạng 1. Sử dụng công thức cộng 66. 1. Phương pháp giải 66. 2. Các ví dụ minh họa 67. Dạng 2. Sử dụng công thức nhân đôi và công thức hạ bậc 71. 1. Phương pháp 71. 2. Các ví dụ minh họa 72. Dạng 3. Công thức biến đổi tổng thành tích và tích thành tổng 76. 1. Phương pháp giải. 76. 2. Các ví dụ minh họa 76. Dạng 4. bất đẳng thức lượng giác và tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác 81. 1. Phương pháp giải 81. 2. Các ví dụ điển hình 81. Dạng 5. chứng minh đẳng thức, bất đẳng thức trong tam giác 84. 1. Phương pháp giải 84. 2. Các ví dụ minh họa 84. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 91. D. BÀI TẬP TRẮC NGHIỆM 98. BÀI 4 . HÀM SỐ LƯỢNG GIÁC VÀ ĐỒ THỊ 127. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 127. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP LỜI GIẢI BÀI TẬP 130. Dạng 1. Tìm tập xác đinh của hàm số 130. 1. Phương pháp 130. 2. Các ví dụ mẫu 131. Dạng 2. Xét tính chẵn lẻ của hàm số 133. 1. Phương pháp 133. 2. Các ví dụ mẫu 133. Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác 136. 1. Phương pháp 136. 2. Ví dụ mẫu 136. Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó 139. 1. Phương pháp 139. 2. Ví dụ mẫu 140. Dạng 5. Đồ thị của hàm số lượng giác 141. 1. Phương pháp 141. 2. Các ví dụ mẫu 142. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 145. D. BÀI TẬP TRẮC NGHIỆM 148. BÀI TẬP CUỐI CHƯƠNG 1 178. CÂU HỎI TRẮC NGHIỆM 178. BÀI TẬP TỰ LUẬN 181. BÀI TẬP TỔNG ÔN CHƯƠNG 1 185. PHẦN 1. TRẮC NGHIỆM 185. PHẦN 2. TỰ LUẬN 193.

Nguồn: toanmath.com

Đọc Sách

Thủ thuật giải trắc nghiệm lượng giác bằng máy tính Casio - Nguyễn Tiến Chinh
Tài liệu Thủ thuật giải trắc nghiệm lượng giác bằng máy tính Casio của thầy giáo Nguyễn Tiến Chinh gồm 14 trang. Tài liệu hướng dẫn mẹo bấm máy tính nhanh của một số bài toán lượng giác thường gặp.
5 dạng toán hàm số lượng giác điển hình - Trần Đình Cư
Tài liệu gồm 19 trang trình bày 5 dạng toán thường gặp về hàm số lượng giác: + Dạng 1. Tìm tập xác định của hàm số. + Dạng 2. Xét tính chẵn lẻ của hàm số. + Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác. + Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó. + Dạng 5. Vẽ đồ thị hàm số lượng giác. Mỗi dạng đều có phương pháp giải, ví dụ mẫu có lời giải chi tiết kèm theo phần bài tập.
Chuyên đề phương trình lượng giác - Trần Duy Thúc
Tài liệu Chuyên đề phương trình lượng giác của thầy Trần Duy Thúc gồm 39 trang, tài liệu tóm tắt những công thức lượng giác thường gặp, các dạng phương lượng giác cơ bản và nâng cao được đan xen với 50 ví dụ về các phương trình lượng giác điển hình. Phần cuối tài liệu là tuyển tập 160 bài toán phương trình lượng giác được trích từ các đề thi Quốc gia, đề dự bị và đề thi thử.
Các kỹ thuật phổ biến nhất giải phương trình lượng giác - Nguyễn Hữu Biển
Các em học sinh thân mến, bài tập giải phương trình lượng giác là một trong nhưng nội dung thường xuyên xuất hiện trong đề thi đại học, kiến thức về giải phương trình lượng giác các em được học trong chương trình giải tích lớp 11 kết hợp với các công thức và kiến thức nền tảng của lớp 10. Để giải phương trình lượng giác, điều đầu tiên các em cần là phải biết cách học thuộc các công thức biến đổi lượng giác cơ bản, tiếp theo các em cần học tập siêng năng, chuyên cần để đúc rút kinh nghiệm cho bản thân, từ đó biết phân chia các dạng toán và kỹ thuật giải tương ứng để đối phó tốt với mọi loại bài về giải phương trình lượng giác trong đề. [ads] Cuốn tài liệu CÁC KỸ THUẬT PHỔ BIẾN NHẤT GIẢI PHƯƠNG TRÌNH LƯỢNG GIÁC được chắt lọc, đánh máy công phu, trình bày đẹp. Nội dung rất hữu ích cho học sinh lớp 11, học sinh ôn thi đại học môn Toán và quý thầy cô giáo dạy Toán THPT. Tài liệu được biên soạn tỉ mỉ, phân chia dạng toán rõ ràng, công thức đầy đủ, mỗi phần đều có ví dụ minh họa và hướng dẫn. Học sinh bị mất gốc kiến thức về lượng giác cũng có thể học lại từ đầu không mấy khó khăn. Hy vọng rằng với cuốn tài liệu hữu ích này, các em học sinh sẽ có một cẩm nang để chinh phục phương trình lượng giác trong thi cử. Tài liệu rất có thể vẫn còn một vài khiếm khuyết, rất mong nhận được ý kiến từ các em học sinh và độc giả.