Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Đinh Tiên Hoàng TP HCM

Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Đinh Tiên Hoàng TP HCM Bản PDF Đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường Đinh Tiên Hoàng – TP HCM gồm 30 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường Đinh Tiên Hoàng – TP HCM : + Cho parabol (P) có dạng: y = ax2 + bx + c (a khác 0). Viết phương trình (P) biết (P) đi qua 3 điểm M(1;2), N(2;11), P(3;6). + Cho phương trình x^2 – x + m – 2 = 0. a) Tìm m để phương trình có hai nghiệm trái dấu. b) Với giá trị m nào thì phương trình có hai nghiệm phân biệt x1, x2 sao cho x1 = 3×2. + Trong mặt phẳng Oxy, cho ba điểm A(0;5); B(2;1); C(8;4). a) Chứng minh ba điểm A, B, C tạo thành một tam giác. b) Tìm tọa độ trung điểm của các cạnh AB, AC, BC. Tìm tọa độ điểm G với G là trọng tâm tam giác ABC. c) Tính cosAB.AC. d) Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành. e) Tìm tọa độ điểm E biết BE = 3AC – 2BC. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Hoàng Hoa Thám TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Hoàng Hoa Thám TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Hoàng Hoa Thám, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Hoàng Hoa Thám – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(2;-1), B(3;2), C(0;3). a) Tìm tọa độ điểm N sao cho ABCN là hình bình hành. b) Tìm tọa độ điểm H là giao điểm của đường thẳng AB và trục tung. + Lập bảng biến thiên và vẽ đồ thị (P) của hàm số y = x2 + 4x. + Cho 3tanx + 5 = 0 với x là góc tù. Tính giá trị biểu thức P = 4cosx/(sinx)^2.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Lý Thái Tổ TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Lý Thái Tổ TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Lý Thái Tổ, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Lý Thái Tổ – TP HCM : + Tìm m để phương trình có hai nghiệm thỏa điều kiện. + Tìm tập xác định của các hàm số. + Xét sự biến thiên và vẽ đồ thị của hàm số: y = 2×2 – 4x + 2.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường TH Thực hành Sài Gòn TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường TH Thực hành Sài Gòn TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường Trung học Thực hành Sài Gòn, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường Trung học Thực hành Sài Gòn – TP HCM : + Trong mặt phẳng tọa độ, cho ba điểm A(-1;4); B(2;5); C(3;-8). a) Chứng minh rằng tam giác ABC vuông. Tính diện tích tam giác ABC. b) Tìm tọa độ H là hình chiếu vuông góc của A trên đường thẳng BC. c) Tìm tọa độ điểm D trên trục tung và có tung độ nhỏ hơn 3 sao cho tam giác ABD cân tại A. + Giải các phương trình và hệ phương trình sau. + Cho biết sin x = 2/9 (90 < x < 180). Tính cos x; tan x; cot2 (180 – x).
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Giồng Ông Tố TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Giồng Ông Tố TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Giồng Ông Tố, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Giồng Ông Tố – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(1;4), B(-2;-1), C(3;1). 1) Tính chu vi tam giác ABC. 2) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. 3) Tìm trên trục hoành điểm P sao cho tổng khoảng cách từ P tới hai điểm A và B là nhỏ nhất. + Cho tam giác ABC có BC = 9, AB = 7 và AC = 8. Tính bán kính đường tròn nội tiếp tam giác ABC. + Cho hàm số y = ax2 + bx + 2 có đồ thị là (P). Tìm phương trình của (P).