Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG Quốc gia môn Toán năm 2020 2021 sở GD ĐT Kiên Giang

Nội dung Đề chọn đội tuyển thi HSG Quốc gia môn Toán năm 2020 2021 sở GD ĐT Kiên Giang Bản PDF Thứ Ba ngày 29 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Kiên Giang tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi môn Toán cấp Quốc gia năm học 2020 – 2021. Đề chọn đội tuyển thi HSG Quốc gia môn Toán năm 2020 – 2021 sở GD&ĐT Kiên Giang gồm 01 trang với 04 bài toán tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn đội tuyển thi HSG Quốc gia môn Toán năm 2020 – 2021 sở GD&ĐT Kiên Giang : + Cho đường tròn (C1) và điểm B thuộc (C1). Điểm A khác B sao cho đường thẳng AB là tiếp tuyến của (C1). Điểm C không thuộc (C1) sao cho đoạn thẳng AC cắt (C1) tại hai điểm phân biệt. Gọi (C2) là đường tròn tiếp xúc với AC tại C và tiếp xúc với (C1) tại D (điểm B và D ở khác phía so với bờ AC). Gọi I là tâm đường tròn ngoại tiếp tam giác BCD và delta là tiếp tuyến chung của (C1), (C2) tại D. a) Chứng minh rằng điểm I cách đều hai đường thẳng AB và delta. b) Chứng minh rằng tâm đường tròn ngoại tiếp tam giác BCD nằm trên đường tròn ngoại tiếp tam giác ABC. + Trên tập hợp các số nguyên không âm, xét phương trình: x^2 + 2.3^y = x(2^(y + 1) – 1) (1). a) Tìm tất cả các cặp số nguyên không âm (x;y) thỏa mãn (1) mà y =< 5. b) Chứng minh rằng không tồn tại cặp số nguyên không âm (x;y) với y >= 6 thỏa mãn phương trình (1). + Tìm tất cả các hàm số liên tục f: R → R sao cho: 8f(4x) – 10f(2x) + 3f(x) = 30x với mọi x thuộc R.

Nguồn: sytu.vn

Đọc Sách

Đề chọn học sinh giỏi Toán 12 chuyên năm 2021 - 2022 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 chương trình THPT chuyên năm học 2021 – 2022 sở GD&ĐT Vĩnh Phúc.
Đề chọn đội tuyển tỉnh môn Toán năm 2021 - 2022 trường chuyên Lê Quý Đôn - Khánh Hòa
Đề chọn đội tuyển tỉnh môn Toán năm 2021 – 2022 trường chuyên Lê Quý Đôn – Khánh Hòa gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút; kỳ thi được diễn ra vào ngày 05 tháng 10 năm 2021.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GDĐT Lâm Đồng
Thứ Tư ngày 22 tháng 09 năm 2021, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi chọn học sinh vào đội tuyển bồi dưỡng thi học sinh giỏi Quốc gia môn Toán năm học 2021 – 2022. Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Lâm Đồng gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2021 - 2022 sở GDĐT Đồng Tháp
Sáng Chủ Nhật ngày 20 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Đồng Tháp tổ chức kỳ thi chọn đội tuyển học sinh giỏi Toán dự thi cấp Quốc gia năm học 2021 – 2022. Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2021 – 2022 sở GD&ĐT Đồng Tháp gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển thi HSG Toán Quốc gia năm 2021 – 2022 sở GD&ĐT Đồng Tháp : + Cho các số thực x, y, z thỏa mãn: x + y + z = -1 và x3 + y3 + z3 = 11. a) Biểu diễn xz theo y. b) Chứng minh rằng trong ba số x, y, z có ít nhất một số thuộc nửa khoảng [-2;-1). + Cho dãy số (an) xác định như sau. Chứng minh rằng với mỗi số tự nhiên n: a) 2an – 1 là số chính phương. b) an viết được dưới dạng tổng bình phương của hai số tự nhiên. + Có 2021 viên bi, đựng trong 100 cái hộp. Mỗi lần, cho phép lấy 2 viên bi, 2 viên bi đó thuộc vào tối đa 2 hộp và bỏ chúng vào 1 hộp khác. Chứng minh rằng sau một số bước có thể bỏ tất cả các viên bi vào cùng 1 hộp.