Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập trắc nghiệm tổ hợp và xác suất có lời giải chi tiết - Nguyễn Phú Khánh, Huỳnh Đức Khánh

Tài liệu gồm 55 trang tuyển tập các bài toán có lời giải chi tiết trong chủ đề tổ hợp và xác suất (Chương 2, Đại số và Giải tích 11) Bài 01. QUY TẮC ĐẾM 1. Quy tắc cộng : Một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động này có m cách thực hiện, hành động kia có n cách thực hiện không trùng với bất kỳ cách nào của hành động thứ nhất thì công việc đó có m +n cách thực hiện. 2. Quy tắc nhân : Một công việc được hoàn thành bởi hai hành động liên tiếp. Nếu có m cách thực hiện hành động thứ nhất và ứng với mỗi cách đó có n cách thực hiện hành động thứ hai thì có m×n cách hoàn thành công việc. + Vấn đề 1. QUY TẮC CỘNG + Vấn đề 2. QUY TẮC CỘNG Bài 02. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP 1. Hoán vị : Cho tập A gồm n phần tử (n ≥ 1). Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử đó. 2. Chỉnh hợp : Cho tập hợp A gồm n phần tử (n ≥ 1). Kết quả của việc lấy k (1 ≤ k ≤ n) phần tử khác nhau từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử đã cho. 3. Tổ hợp : Giả sử tập A có n phần tử (n ≥ 1). Mỗi tập con gồm k (1 ≤ k ≤ n) phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho. [ads] + Vấn đề 1. HOÁN VỊ + Vấn đề 2. CHỈNH HỢP + Vấn đề 3. TỔ HỢP + Vấn đề 4. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH Bài 03. NHỊ THỨC NIU-TƠN Bài 04. BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ 1. Phép thử và không gian mẫu : Phép thử ngẫu nhiên (gọi tắt là phép thử) là một thí nghiệm hay một hành động mà: • Kết quả của nó không đoán trước được. • Có thể xác định được tập hợp tất cả các kết quả có thể xảy ra của phép thử đó. Tập hợp mọi kết quả của một phép thử T được gọi là không gian mẫu của T và được kí hiệu là Ω. Số phần tử của không gian mẫu được kí hiệu là n(Ω) hay Ω. 2. Biến cố : Biến cố A liên quan đến phép thử T là biến cố mà việc xảy ra hay không xảy ra của A tùy thuộc vào kết quả của T. Mỗi kết quả của phép thử T làm cho A xảy ra được gọi là một kết quả thuận lợi cho A. Tập hợp các kết quả thuận lợi cho A được kí hiệu là ΩA 3. Xác suất : Giả sử phép thử T có không gian mẫu Ω là một tập hữu hạn và các kết quả của T là đồng khả năng. Nếu A là một biến cố liên quan với phép thử T và ΩA là một tập hợp các kết quả thuận lợi cho A thì xác suất của A là một số, kí hiệu là P(A), được xác định bởi công thức: P(A) = ΩA/Ω

Nguồn: toanmath.com

Đọc Sách

Bài tập phương trình và hệ phương trình có lời giải chi tiết - Nguyễn Phú Khánh, Huỳnh Đức Khánh
Tài liệu gồm 44 trang tuyển chọn và giải chi tiết các bài toán phương trình và hệ phương trình trong chương trình Đại số 10 chương 3, tài liệu được biên soạn bởi thầy Nguyễn Phú Khánh và thầy Huỳnh Đức Khánh. Bài 01. Đại cương về phương trình + Vấn đề 1. Điều kiện xác định của phương trình + Vấn đề 2. Phương trình tương đương – phương trình hệ quả + Vấn đề 3. Giải phương trình [ads] Bài 02. Phương trình quy về phương trình bậc nhất, bậc hai + Vấn đề 1. Hàm số bậc nhất + Vấn đề 2. Số nghiệm của phương trình bậc hai + Vấn đề 3. Dấu của nghiệm phương trình bậc hai + Vấn đề 4. Biểu thức đối xứng giữa các nghiệm của phương trình bậc hai + Vấn đề 5. Tính chất nghiệm của phương trình bậc hai + Vấn đề 6. Phương trình quy về phương trình bậc nhất, bậc hai Bài 03. Phương trình và hệ phương trình bậc nhất nhiều ẩn Mời bạn đọc xem thêm một số tài liệu tiêu biểu về chủ đề phương trình và hệ phương trình bên dưới: + Kỹ thuật giải nhanh hệ phương trình – Đặng Thành Nam + Tư duy sáng tạo tìm tòi lời giải PT – BPT – HPT đại số và vô tỷ – Lê Văn Đoàn + Tư duy logic tìm tòi lời giải hệ phương trình – Mai Xuân Vinh
Bài tập sử dụng phương pháp hàm số để giải hệ phương trình
Tài liệu gồm 64 trang hướng dẫn sử dụng phương pháp hàm số giải hệ phương trình, các bài toán hệ phương trình được chọn lọc và giải chi tiết. Phương pháp hàm số là một phương pháp quan trọng và rất hay được sử dụng để giải các bài toán hệ phương trình, đây là một trong những phương pháp được “yêu thích” trong các đề thi THPT Quốc gia môn Toán bởi tính sáng tạo, khả năng nhận dạng và nhạy bén trong việc chọn hàm số. Thông qua tài liệu, bạn đọc sẽ nắm được một số tư duy biến đổi điển hình để có thể đưa về dạng bài quen thuộc, từ đó có thể chọn một hàm số thích hợp và làm đơn giản bài toán. [ads]
Bài tập phương pháp lũy thừa giải hệ phương trình có lời giải chi tiết
Tài liệu gồm 19 trang hướng dẫn phương pháp lũy thừa giải hệ phương trình thông qua các bài toán được giải chi tiết. Cùng với phương pháp hàm số đã trình bày ở bài trước thì phương pháp lũy thừa cũng là một phương pháp phổ biến trong việc giải phương trình. Có thể nói đây là phương pháp được nghĩ đến đầu tiên khi giải các hệ phương trình chứa dấu căn, vì ta có thể ngay lập tức loại bỏ dấu căn bằng cách nâng lũy thừa tương ứng. Tuy nhiên cần phải “thận trọng” khi sử dụng phương pháp này vì việc nâng lũy thừa có thể khiến cho các phương trình hệ quả có số mũ lớn và khó giải. Thông qua tài liệu, bạn đọc sẽ “nhớ mặt” được các dạng hệ phương trình có thể sử dụng phương pháp nâng lũy thừa, và hướng sử lý phương trình hệ quả sau đó. [ads]
Bài tập phương trình chứa căn - Lê Văn Đoàn
Tài liệu 7 trang do thầy Lê Văn Đoàn biên soạn phân dạng và tuyển chọn bài tập phương trình chứa căn. Các dạng toán phương trình chứa căn gồm: + Dạng 1. Phương trình chứa căn cơ bản + Dạng 2. Phương trình chứa căn sử dụng phương pháp đặt ẩn phụ + Dạng 3. Đưa về phương trình tích số (nhóm, liên hợp, …) + Dạng 4. Sử dụng hằng đẳng thức đưa về phương trình cơ bản Ngoài ra còn có các phương pháp giải phương trình chứa căn khác như: đánh giá bằng bất đẳng thức, lượng giác hóa, hàm số … [ads]