Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn đội tuyển học sinh giỏi Toán năm 2021 sở GDĐT Lâm Đồng

Ngày 11 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi chọn học sinh vào đội tuyển bồi dưỡng thi học sinh giỏi Quốc gia môn Toán năm học 2020 – 2021. Đề thi chọn đội tuyển học sinh giỏi Toán năm 2021 sở GD&ĐT Lâm Đồng gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi chọn đội tuyển học sinh giỏi Toán năm 2021 sở GD&ĐT Lâm Đồng : + Cho tam giác ABC nhọn, không cân, nội tiếp trong đường tròn (O). Gọi H là hình chiếu của A lên BC và D, E, M lần lượt là trung điểm HB, HC, BC. Đường tròn (ABE) tâm I cắt AC tại S và đường tròn (ACD) tâm J cắt AB tại R. a) Chứng minh rằng BC = 4IJ. b) Trung tuyến đỉnh H của tam giác AHM cắt RS tại T, chứng minh rằng các đường thẳng AT, BS, CR đồng quy. + Cho số a = 2019.2020.2021 và số nguyên dương n >= 3. Người ta xếp n số nguyên dương nào đó lên một đường tròn thỏa mãn đồng thời hai điều kiện sau: (i) Hai số nằm cạnh nhau có tích không chia hết cho a. (ii) Hai số không nằm cạnh nhau có tích chia hết cho a. a) Tìm một bộ các số nguyên dương thỏa mãn cách xếp trên. b) Tìm giá trị lớn nhất của n. + Cho tập S = {1; 2; …; n} với n là số nguyên dương. Gọi An là tập hợp các hoán vị (a1; a2; …; an) của tập S thỏa mãn điều kiện 2(a1 + a2 + … + ak) chia hết cho k với mọi k = 1; 2; …; n. a) Chứng minh rằng an – 1 chia hết cho n – 1 khi n chẵn và n > 3. b) Tìm số phần tử của A2020.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Bắc Ninh
Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021 sở GD&ĐT Bắc Ninh; đề thi được biên soạn theo dạng đề trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án mã đề 543, 511, 009, 950. Trích dẫn đề thi học sinh giỏi tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh a, góc giữa mặt bên và mặt phẳng đáy là α thoả mãn cos α = 1/3. Mặt phẳng (P) qua AC và vuông góc với mặt phẳng (SAD) chia khối chóp S.ABCD thành hai khối đa diện. Tỉ lệ thể tích hai khối đa diện là gần nhất với giá trị nào trong các giá trị sau? + Một khối gỗ hình trụ với bán kính đáy bằng 6 và chiều cao bằng 8. Trên một đường tròn đáy nào đó ta lấy hai điểm A, B sao cho cung AB có số đo 120 độ. Người ta cắt khúc gỗ bởi một mặt phẳng đi qua A, B và tâm của hình trụ (tâm của hình trụ là trung điểm của đoạn nối tâm hai đáy) để được thiết diện như hình vẽ. Biết diện tích S của thiết diện thu được có dạng S = aπ + b3.Tính P = a + b. + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (1;1;1), B(2;0;1) và mặt phẳng (P). Viết phương trình chính tắc của đường thẳng d đi qua A, song song với mặt phẳng (P) sao cho khoảng cách từ B đến d lớn nhất. File WORD (dành cho quý thầy, cô):
Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 2021 sở GD ĐT Phú Yên
Nội dung Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 2021 sở GD ĐT Phú Yên Bản PDF Thứ Ba ngày 30 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Phú Yên tổ chức kỳ thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2020 – 2021. Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 – 2021 sở GD&ĐT Phú Yên gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 – 2021 sở GD&ĐT Phú Yên : + Cho tam giác nhọn ABC có đường cao AM, trực tâm H. Đường thẳng BH cắt đường tròn đường kính AC tại D, E (BD < BE). Đường thẳng CH cắt đường tròn đường kính AB tại F, G (CF < CG). Đường tròn ngoại tiếp tam giác DMF cắt BC tại điểm thứ hai là N. a) Chứng minh rằng các điểm G, M, N, E cùng thuộc một đường tròn. b) Chứng minh rằng các đường thẳng BF, CD, HN đồng quy. + Cho P(x), Q(x) là các đa thức có hệ số cao nhất bằng 1 và các hệ số đều là số thực và deg P(x) = deg Q(x) = 2020. Chứng minh rằng nếu phương trình P(x) = Q(x) không có nghiệm thực thì phương trình P(x + 2021) = Q(x – 2021) có nghiệm thực. + Cho p là số nguyên tố khác 2; a và b là hai số tự nhiên lẻ sao cho (a + b) chia hết cho p, (a − b) chia hết cho (p – 1). Chứng minh rằng (a^b + b^a) chia hết 2p.
Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 2021 sở GD ĐT Kiên Giang
Nội dung Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 2021 sở GD ĐT Kiên Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi vòng tỉnh môn Toán THPT năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2021; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2020 2021 sở GD ĐT Tiền Giang
Nội dung Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2020 2021 sở GD ĐT Tiền Giang Bản PDF Thứ Ba ngày 09 tháng 03 năm 2021, sở Giáo dục và Đào tạo Tiền Giang tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2020 – 2021 sở GD&ĐT Tiền Giang gồm 02 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề).