Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép nhân và phép khai phương

Nội dung Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép nhân và phép khai phương Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép nhân và phép khai phương Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép nhân và phép khai phương Tài liệu này bao gồm 19 trang với các kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề giữa phép nhân và phép khai phương trong môn Toán lớp 9. Mỗi phần bài tập đều có đáp án và lời giải chi tiết để học sinh có thể tự kiểm tra và tự học. A. Tóm tắt lý thuyết: Định lý: Phép nhân của hai số a và b (a, b > 0) có thể được biểu diễn dưới dạng phép khai phương: ab = a √b. Quy tắc khai phương một tích: Khi nhân hai số a và b (a, b ≥ 0) ta có: √(ab) = √a * √b. Quy tắc nhân các căn bậc hai: Khi nhân hai biểu thức A và B (A, B ≥ 0) ta có: √A * √B = √(AB). B. Bài tập và các dạng toán: Dạng 1: Tính giá trị của biểu thức sử dụng công thức khai phương một tích. Dạng 2: Rút gọn biểu thức bằng cách áp dụng công thức khai phương của một tích. Dạng 3: Giải phương trình chứa căn thức, cần chú ý đến điều kiện đi kèm. Dạng 4: Chứng minh đẳng thức bằng cách áp dụng bất đẳng thức Côsi cho các số không âm. Bài tập trắc nghiệm và bài tập về nhà được cung cấp để học sinh tự luyện tập. File Word cũng được cung cấp để giáo viên dễ dàng sử dụng và chỉnh sửa khi cần thiết. Thông qua tài liệu này, học sinh sẽ nắm vững kiến thức và kỹ năng để áp dụng phép nhân và phép khai phương hiệu quả trong việc giải các bài toán và ứng dụng trong thực tế.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề căn bậc hai
Tài liệu gồm 25 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm căn bậc hai. 2. Khái niệm về căn bậc hai số học. 3. So sánh các căn bậc hai số học. B. Bài tập áp dụng và các dạng toán. Dạng 1 : Tìm căn bậc hai và căn bậc hai số học của một số. Cách giải: Ta sử dụng các kiến thức sau: – Nếu a > 0 thì các căn bậc hai của a là ±a. – Căn bậc hai số học của a là a. – Nếu a = 0 thì căn bậc hai của a và căn bậc hai số học của a cùng bằng 0. – Nếu a < 0 thì a không có căn bậc hai và do đó không có căn bậc hai số học. Dạng 2 : Tìm số có căn bậc hai số học là một số cho trước. Cách giải: Với số thực a ≥ 0 cho trước, ta có 2 a chính là số có căn bậc hai số học bằng a. Dạng 3 : Tính giá trị của biểu thức chứa căn bậc hai. Cách giải: Ta sử dụng kiến thức: Với số a ≥ 0 ta có 2 2 a aa a. Dạng 4 : So sánh các căn bậc hai số học. Cách giải: Với: a b ab a b. Dạng 5 : Tìm giá trị của x thỏa mãn điều kiện cho trước. Cách giải: Ta sử dụng chú ý sau: 2 2 xa x a 8. Với số a ≥ 0 ta có: 2 xa xa. Dạng 6 : Chứng minh một số là số vô tỷ. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề căn thức bậc hai và hằng đẳng thức $sqrt A2 left A right$
Tài liệu gồm 25 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn thức bậc hai và hằng đẳng thức $\sqrt {A^2} = \left| A \right|$ trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Căn thức bậc hai. a. Định nghĩa: Với A là một biểu thức đại số thì A được gọi là căn thức bậc hai của A và A gọi là biểu thức lấy căn hay là biểu thức dưới dấu căn. b. A có nghĩa (hay xác định) khi 1 A 0 A ⇒ có nghĩa khi A > 0. Ví dụ: 3x có nghĩa khi 30 0 x x. 2. Hằng đẳng thức. Ví dụ 1: 2 2 12 12 12. Ví dụ 2: Rút gọn biểu thức sau: 2 (2) x với x ≥ 2. B. Bài tập và các dạng toán. Dạng 1: Tìm điều kiện để biểu thức chứa căn có nghĩa. Dạng 2: Tính giá trị của biểu thức. Dạng 3: Rút gọn các biểu thức chứa biến. Dạng 4: giải phương trình. Dạng 5: Tìm GTLN, GTNN của biểu thức. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề liên hệ giữa phép chia và phép khai phương
Tài liệu gồm 14 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề liên hệ giữa phép chia và phép khai phương trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định lý: Với A B 0 0 thì A A B B. 2. Quy tắc khai phương một thương: Muốn khai phương A B (với A B 0 0), ta khai phương A khai phương B rồi lấy thương của hai kết quả. Ta có: 0 0 A A A B. 3. Quy tắc chia các căn bậc hai: Muốn chia căn bậc hai của số A ≥ 0 cho căn bậc hai của số B > 0, ta có thể chia A cho B rồi khai phương kết quả đó 0 0 A A A B. B. Bài tập và các dạng toán. Dạng 1 : Thực hiện phép tính. Cách giải: Áp dụng công thức khai phương một thương. Dạng 2 : Rút gọn biểu thức. Cách giải: Áp dụng quy tắc khai phương một thương. Dạng 3 : Giải phương trình. Cách giải: Khi giải phương trình chứa căn thức, luôn cần chú ý đến các điều kiện đi kèm. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề liên hệ giữa phép nhân và phép khai phương
Tài liệu gồm 19 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề liên hệ giữa phép nhân và phép khai phương trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định lý: Với hai số a b 0 ta có: ab a b. Chú ý: Định lí trên còn có thể mở rộng cho tích của nhiều số không âm. 2. Quy tắc khai phương một tích. Với A B 0 0 ta có: AB A B. Mở rộng: Với 1 2 0 0 … 0 AA n ta có: 1 2 1 2 A A n n. 3. Quy tắc nhân các căn bậc hai. Với hai biểu thức A B 0 0 ta có: A B AB. Chú ý: Với A ≥ 0, ta có: 2 2 A A AA. B. Bài tập và các dạng toán. Dạng 1 : Tính giá trị biểu thức. Cách giải: Áp dụng công thức khai phương một tích. Dạng 2 : Rút gọn biểu thức. Cách giải: Áp dụng công thức khai phương của một tích. Dạng 3 : Giải phương trình. Cách giải: Khi giải phương trình chứa căn thức, luôn cần chú ý đến các điều kiện đi kèm. Dạng 4 : Chứng minh đẳng thức. Cách giải: Áp dụng bất đẳng thức Côsi cho các số không âm. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.