Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Quốc gia THPT 2019 môn Toán (ngày thi thứ nhất)

giới thiệu đến thầy, cô và các em nội dung đề thi chọn học sinh giỏi Quốc gia THPT 2019 môn Toán ngày thi thứ nhất (VMO ngày 1), kỳ thi được tổ chức vào Chủ Nhật, ngày 13 tháng 01 năm 2019, đề thi gồm 01 trang với 04 bài toán tự luận, thí sinh có 180 phút để làm bài thi. Trích dẫn đề thi chọn học sinh giỏi Quốc gia THPT 2019 môn Toán (ngày thi thứ nhất) : + Cho tam giác ABC có trực tâm H và tâm đường tròn nội tiếp 1. Trên các tia AB, AC, BC, BA ,CA ,CB lần lượt lấy các điểm A1, A2, B1, B2, C1, C2 sao cho AA1 = AA2 = BC, BB1 = BB2 = CA, CC1 = CC2 = AB. Các cặp đường thẳng (B1B2, C1C2), (C1C2, A1A2), (A1A2, B1B2) lần lượt có các giao điểm là A’, B’, C’. a) Chứng minh rằng diện tích tam giác A’B’C’ không vượt quá diện tích tam giác ABC. b) Gọi J là tâm đường tròn ngoại tiếp tam giác A’B’C’. Các đường thẳng AJ, BJ, CJ lần lượt cắt các đường thẳng BC, CA, AB tại R, S, T tương ứng. Các đường tròn ngoại tiếp các tam giác AST, BTR, CRS cùng đi qua một điểm K. Chứng minh rằng nếu tam giác ABC không cần thì IHJK là hình bình hành. [ads] + Cho hàm số liên tục f: R → (0;+∞) thỏa mãn lim f(x) = lim f(x) = 0. Chứng minh rằng f(x) đạt giá trị lớn nhất trên R. Chứng minh rằng tôn tại hai dãy (xn), (yn) với xn < yn (n = 1, 2 …) sao cho chúng hội tụ tới một giới hạn và thỏa mãn f(x) = f(y) với mọi n.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi MTCT Toán THPT năm 2022 - 2023 sở GDĐT Vĩnh Long
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp tỉnh giải toán bằng máy tính cầm tay môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Long; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn giải. Trích dẫn Đề học sinh giỏi MTCT Toán THPT năm 2022 – 2023 sở GD&ĐT Vĩnh Long : + Một người gửi triệu đồng vào ngân hàng với kì hạn tháng (quý), lãi suất một quý theo hình thức lãi kép. Sau đúng tháng, người đó lại gửi thêm triệu đồng với hình thức và lãi suất như trên. Hỏi sau năm tính từ lần gửi đầu tiên người đó nhận được số tiền gần với kết quả nào nhất? (làm tròn đến 1 chữ số thâp phân). + Cho tam giác ABC có AB 3 5 BC 5 3 CA 48. Gọi M là trung điểm của AC; N là điểm trên cạnh BC sao cho BC BN 3 và BM cắt AN tại I. Trên đường thẳng vuông góc với mặt phẳng ABC tại I, lấy điểm S sao cho SI 7. Tính gần đúng a) Độ dài các cạnh SA SB SC của tứ diện SABC (làm tròn đến 9 chữ số thâp phân). b) Chiều cao BK của tứ diện SABC (làm tròn đến 9 chữ số thâp phân). c) Bán kính R của mặt cầu ngoại tiếp tứ diện SABC (làm tròn đến 9 chữ số thâp phân). + Cho 2023 đường tròn đồng tâm nội tiếp trong 2023 hình vuông (dạng như hình vẽ). Tính gần đúng diện tích phần tô đậm, biết hình vuông lớn nhất có cạnh bằng 1 cm (làm tròn đến 5 chữ số thâp phân).
Đề HSG Toán 12 năm 2022 - 2023 trường THCS THPT Thống Nhất - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng và chọn đội tuyển học sinh giỏi môn Toán 12 năm học 2022 – 2023 trường THCS & THPT Thống Nhất, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết mã đề 235. Trích dẫn Đề HSG Toán 12 năm 2022 – 2023 trường THCS & THPT Thống Nhất – Thanh Hóa : + Một người nhận hợp đồng dài hạn làm việc cho một công ty với mức lương khởi điểm của mỗi tháng trong 3 năm đầu tiên là 6 triệu đồng /tháng. Tính từ ngày đầu tiên làm việc, cứ sau đúng 3 năm liên tiếp thì tăng lương 10% so với mức lương một tháng người đó đang hưởng. Nếu tính theo hợp đồng thì tháng đầu tiên của năm thứ 16 người đó nhận được mức lương là bao nhiêu? + Xét các số nguyên dương a b sao cho phương trình 2 a xb x ln ln 5 0 có hai nghiệm phân biệt 1 2 x x và phương trình 2 5log log 0 xb xa có hai nghiệm phân biệt 3 4 x x thỏa mãn 12 34 xx. Tìm giá trị nhỏ nhất min S của S ab. + Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a SA SB a SC SD a 3. Gọi E F lần lượt là trung điểm các cạnh SA SB. Trên cạnh BC lấy M sao cho BM x. Tính diện tích thiết diện của hình chóp với mặt phẳng (MEF) theo x và a?
Đề học sinh giỏi Toán 12 năm 2022 - 2023 trường THPT Yên Định 1 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi giao lưu học sinh giỏi môn Toán 12 THPT năm học 2022 – 2023 trường THPT Yên Định 1, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi Toán 12 năm 2022 – 2023 trường THPT Yên Định 1 – Thanh Hóa : + Cho đa giác lồi n cạnh n n 6 nội tiếp đường tròn (O) sao cho không có ba đường chéo nào đồng quy. Các cạnh và các đường chéo của đa giác giao nhau tạo thành các tam giác. Gọi X là tập hợp các tam giác như thế. Lấy ngẫu nhiên một tam giác trong tập X. Tìm n để xác suất lấy được tam giác không có đỉnh nào là đỉnh của đa giác bằng 4 15. + Cho hàm số 3 22 3 y x mx m x m 3 3 với m là tham số, gọi (C) là đồ thị của hàm số đã cho. Biết rằng, khi m thay đổi, điểm cực đại của đồ thị (C) luôn nằm trên một đường thẳng d cố định. Xác định hệ số góc k của đường thẳng d. + Một chiếc ly dạng hình nón (như hình vẽ với chiều cao ly là h). Người ta đổ một lượng nước vào ly sao cho chiều cao của lượng nước trong ly bằng 1 4 chiều cao của ly. Hỏi nếu bịt kín miệng ly rồi úp ngược ly lại thì tỷ lệ chiều cao của mực nước và chiều cao của ly nước bây giờ bằng bao nhiêu?
Đề học sinh giỏi Toán 12 năm 2022 - 2023 trường THPT Tĩnh Gia 1 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển học sinh giỏi cấp tỉnh môn Toán 12 năm học 2022 – 2023 trường THPT Tĩnh Gia 1, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết mã đề 111. Trích dẫn Đề học sinh giỏi Toán 12 năm 2022 – 2023 trường THPT Tĩnh Gia 1 – Thanh Hóa : + Cửa hàng A có đặt trước sảnh một cái nón lớn với chiều cao 1,35 m và sơn cách điệu hoa văn trang trí một phần mặt ngoài của hình nón ứng với cung nhỏ AB như hình vẽ. Biết AB 1 45 m ACB 150 và giá tiền trang trí là 2.000.000 đồng mỗi mét vuông. Hỏi số tiền (làm tròn đến hàng nghìn) mà cửa hàng A cần dùng để trang trí là bao nhiêu? + Trong năm đầu tiên đi làm, anh A được nhận lương là 10 triệu đồng mỗi tháng. Cứ hết một năm, anh A lại được tăng lương, mỗi tháng năm sau tăng 12% so với mỗi tháng năm trước. Mỗi khi lĩnh lương anh A đều cất đi phần lương tăng so với năm ngay trước để tiết kiệm mua ô tô. Hỏi sau ít nhất bao nhiêu năm thì anh A mua được ô tô giá 500 triệu biết rằng anh A được gia đình hỗ trợ 32% giá trị chiếc xe? + Mỗi lượt, ta gieo một con súc sắc (loại 6 mặt, cân đối) và một đồng xu (cân đối). Tính xác suất để trong 3 lượt gieo như vậy, có ít nhất một lượt gieo được kết quả con xúc sắc xuất hiện mặt 1 chấm, đồng thời đồng xu xuất hiện mặt sấp.