Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 12 môn Toán lần 2 năm 2020 2021 trường Quảng Xương 2 Thanh Hóa

Nội dung Đề KSCL lớp 12 môn Toán lần 2 năm 2020 2021 trường Quảng Xương 2 Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 lần 2 năm học 2020 – 2021 trường THPT Quảng Xương 2, tỉnh Thanh Hóa. Trích dẫn đề KSCL Toán lớp 12 lần 2 năm 2020 – 2021 trường Quảng Xương 2 – Thanh Hóa : + Một xí nghiệp chế biến sữa bò muốn sản xuất lon đựng sữa có dạng hình trụ bằng thiếc có thể tích không đổi. Để giảm giá một lon sữa khi bán ra thị trường người ta cần chế tạo lon sữa có kích thước sao cho ít tốn kém vật liệu. Để thỏa mãn yêu cầu đặt ra (diện tích toàn phần bé nhất), người ta phải thiết kế lon sữa thỏa mãn điều kiện nào trong các điều kiện sau: A. Chiều cao bằng 3 lần bán kính của đáy. B. Chiều cao bằng bình phương bán kính của đáy. C. Chiều cao bằng đường kính của đáy. D. Chiều cao bằng bán kính của đáy. + Cho hàm số f(x) liên tục trên R và đồ thị hàm số y f x cắt trục hoành tại các điểm có hoành độ lần lượt là a, b, 0, c (a < b < c) (như hình bên dưới). Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số 2 g x f x m trên a c bằng 2021. Tổng tất cả các phần tử của S bằng? + Cho hàm số bậc bốn y f x có đồ thị là đường cong (như hình vẽ bên dưới). Biết hàm số đạt cực trị tại ba điểm 1 2 3 x x x theo thứ tự lập thành một cấp số cộng có công sai là 2. Gọi 1 S là diện tích phần gạch chéo, 2 S là diện tích phần tô đậm. Tỉ số 1 2 S S bằng?

Nguồn: sytu.vn

Đọc Sách

Đề KSCL giữa kì 1 Toán 12 năm 2019 - 2020 trường chuyên ĐH Vinh - Nghệ An
Ngày … tháng 11 năm 2019, trường THPT chuyên Đại học Vinh, tỉnh Nghệ An tổ chức kì thi khảo sát chất lượng giữa học kì 1 môn Toán lớp 12 năm học 2019 – 2020. Đề KSCL giữa kì 1 Toán 12 năm 2019 – 2020 trường chuyên ĐH Vinh – Nghệ An có mã đề 209, đề gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, kì thi vừa đánh giá chất lượng giai đoạn giữa HKI, vừa kiểm tra kiến thức ôn tập chuẩn bị cho kì thi THPT Quốc gia môn Toán năm 2020. Trích dẫn đề KSCL giữa kì 1 Toán 12 năm 2019 – 2020 trường chuyên ĐH Vinh – Nghệ An : + Một cốc thủy tinh có dạng hình trụ có bán kính đáy 3cm và chiều cao 8cm, người ta muốn làm hộp giấy cứng dạng hình hộp chữ nhật để đựng cốc (xem hình vẽ). Diện tích phần giấy cứng để làm hộp đựng (vừa khít cốc, kín hai đầu và không tính lề, mép) bằng bao nhiêu? [ads] + Cho hàm số y = x^3 – 2018x có đồ thị (C), điểm M1 thuộc (C) có hoành độ là 1, tiếp tuyến của (C) tại M1 cắt (C) tại M2, tiếp tuyến của (C) tại M2 cắt (C) tại M3, tiếp tuyến của (C) tại M3 cắt (C) tại M4, cứ tiếp tục như thế cho đến khi tiếp tuyến của (C) tại Mn-1 cắt (C) tại Mn(xn;yn) (với n > 1) thỏa mãn: 2018xn + yn + 2^2019 = 0. + Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a và AA’ = 2a. Gọi M, N lần lượt là trung điểm AA’, BB’ và G là trọng tâm tam giác ABC. Mặt phẳng (MNG) cắt BC, CA lần lượt tại F, E. Thể tích khối đa diện có các đỉnh là các điểm A, M, E, B, N, F bằng?
Đề KSCL giữa HK1 Toán 12 năm 2018 - 2019 trường THPT chuyên Đại học Vinh - Nghệ An
Đề KSCL giữa HK1 Toán 12 năm 2018 – 2019 trường THPT chuyên Đại học Vinh – Nghệ An mã đề 132 được biên soạn nhằm giúp nhà trường và giáo viên đánh giá khả năng của từng học sinh để có phương pháp dạy học phù hợp, đề gồm 5 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh có 90 phút để hoàn thành đề thi này. Trích dẫn đề KSCL giữa HK1 Toán 12 năm 2018 – 2019 trường THPT chuyên Đại học Vinh – Nghệ An : + Sinh nhật của An vào ngày 1 tháng 5, Bạn An muốn mua một chiếc máy ảnh giá khoảng 600.000 đồng để làm quà sinh nhật cho chính mình. Bạn ấy quyết định bỏ ống tiết kiệm 10 000 đồng vào ngày 1 tháng 1 của năm đó, sau đó cứ liên tục những ngày sau, mỗi ngày bạn bỏ ống tiết kiện 5 000 đồng. Biết trong năm đó, tháng 1 có 31 ngày, tháng 2 có 28 ngày, tháng 3 có 31 ngày và tháng 4 có 30 ngày. Gọi a (đồng) là số tiền An có được đến sinh nhật của mình (ngày sinh nhật An không bỏ tiền vào ống). Khi đó ta có? [ads] + Trong năm học 2018-2019, Trường THPT Chuyên Đại học Vinh có 13 lớp học sinh khối 10, 12 lớp học sinh khối 11 và 12 lớp học sinh khối 12. Nhân ngày nhà giáo Việt Nam 20 tháng 11 nhà trường chọn ngẫu nhiên 2 lớp trong trường để tham gia hội diễn văn nghệ của Trường Đại học Vinh. Xác suất để 2 lớp được chọn không cùng một khối là? + Một vật chuyển động theo quy luật s = -1/2.t^3 + 9t^2, với t (giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong thời gian đó. Hỏi trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu ?
Đề KSCL giữa HK1 Toán 12 năm 2018 - 2019 trường THPT Bùi Thị Xuân - TT. Huế
Đề KSCL giữa HK1 Toán 12 năm 2018 – 2019 trường THPT Bùi Thị Xuân – TT. Huế mã đề 001 gồm 2 trang với 24 câu hỏi trắc nghiệm khách quan (chiếm 8 điểm) và 1 bài toán tự luận (chiếm 2 điểm), yêu cầu học sinh hoàn thành đề thi trong thời gian 45 phút, đây là kỳ thi được tổ chức định kỳ tại các trường nhằm giúp giáo viên và nhà trường đánh giá được chất lượng học tập của mỗi học sinh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL giữa HK1 Toán 12 năm 2018 – 2019 trường THPT Bùi Thị Xuân – TT. Huế : + Gọi A, B là hai điểm cực trị của đồ thị hàm số y = f(x) = x^3 – 3x^2 + m với m là tham số thực khác 0. Tìm tất cả các giá trị thực của tham số m để trọng tâm tam giác OAB thuộc đường thẳng 3x + 3y – 8 = 0. + Cho hai hàm số f(x) = (2x + 1)/(x + 1) và g(x) = (ax + 1)/(x + 2) với a khác 1/2. Tìm tất cả các giá trị thực dương của a để các tiệm cận của hai đồ thị tạo thành một hình chữ nhật có diện tích là 4.
Đề KSCL học kỳ 1 Toán 12 năm 2020 - 2021 trường chuyên Đại học Vinh - Nghệ An
Đề KSCL học kỳ 1 Toán 12 năm 2020 – 2021 trường chuyên Đại học Vinh – Nghệ An được biên soạn theo dạng đề thi 100% trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề KSCL học kỳ 1 Toán 12 năm 2020 – 2021 trường chuyên Đại học Vinh – Nghệ An : + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với (ABC). Tâm của mặt cầu ngoại tiếp hình chóp S.ABC là: A. Trung điểm của SA. B. Trung điểm của SC. C. Trung điểm của SB. D. Trung điểm của AC. + Một nguồn âm đẳng hướng phát ra từ điểm O. Mức cường độ âm tại điểm M cách O một khoảng R được tính bởi công thức LM = log k/R2 (Ben), với k > 0 là hằng số. Biết điểm O thuộc đoạn thẳng AB và mức cường độ âm tại A và B lần lượt là LA = 4,3 (Ben) và LB = 5 (Ben). Mức cường độ âm tại trung điểm của AB bằng (làm tròn đến hai chữ số thập phân). + Mỗi mặt của hình bát diện đều là: A. Hình vuông. B. Tam giác đều. C. Bát giác đều. D. Ngũ giác đều.