Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu học sinh giỏi lớp 8 môn Toán năm 2017 2018 phòng GD ĐT thành phố Thái Nguyên

Nội dung Đề giao lưu học sinh giỏi lớp 8 môn Toán năm 2017 2018 phòng GD ĐT thành phố Thái Nguyên Bản PDF - Nội dung bài viết Đề giao lưu học sinh giỏi Toán lớp 8 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên Đề giao lưu học sinh giỏi Toán lớp 8 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên Đề giao lưu học sinh giỏi Toán lớp 8 năm 2017 – 2018 do phòng Giáo dục và Đào tạo thành phố Thái Nguyên tổ chức nhằm tạo cơ hội cho các em học sinh giỏi có cơ hội trình bày kiến thức và kỹ năng Toán của mình. Đề thi được chuẩn bị kỹ lưỡng, đa dạng về dạng bài tập và mức độ khó, giúp các em thử sức và phát huy tối đa khả năng. Qua đề giao lưu này, các em học sinh giỏi được tiếp cận với những bài tập mới lạ, thách thức và phát triển khả năng tư duy logic, sáng tạo trong giải quyet vấn đề. Đề thi không chỉ là bài kiểm tra mà còn là cơ hội rèn luyện kỹ năng Toán và mở rộng kiến thức cho các em. Đề giao lưu học sinh giỏi Toán lớp 8 năm 2017 – 2018 là một hoạt động giáo dục ý nghĩa, góp phần nâng cao chất lượng giáo dục và đào tạo ở thành phố Thái Nguyên.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Tiền Hải – Thái Bình : + Cho hàm số y = mx + 4m + 3 (m là tham số) có đồ thị là đường thẳng (d). Tìm điểm cố định mà đường thẳng (d) đi qua với mọi giá trị của m. + Cho tam giác nhọn ABC, các đường cao BE, CF. Gọi M là trung điểm của cạnh BC. a) Chứng minh MEF cân và AEF = ABC. b) Trên đoạn BE lấy điểm Q sao cho BFQ = CFE. Chứng minh BFQ đồng dạng với CFE và EF.BC + BF.CE = BE.CF. + Cho tam giác nhọn ABC. Gọi N là điểm bất kì trên đoạn thẳng BC (N khác B và C). Gọi các điểm H, K lần lượt là hình chiếu vuông góc của N trên cạnh AB, AC. Xác định vị trí của điểm N để đoạn thẳng HK có độ dài nhỏ nhất.
Đề giao lưu HSG Toán 8 năm 2023 - 2024 phòng GDĐT thành phố Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giao lưu học sinh giỏi môn Toán 8 THCS cấp thành phố năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Thanh Hóa, tỉnh Thanh Hóa. Trích dẫn Đề giao lưu HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT thành phố Thanh Hóa : + Giả sử đa thức f x chia cho x 1 dư 4; chia cho 2 x 1 dư 2 3 x. Hãy tìm dư trong phép chia f x cho 2. + Cho O là trung điểm của đoạn thẳng AB. Vẽ tia Ax By cùng phía đối với AB và vuông góc AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. a) Chứng minh OAC đồng dạng với DBO và 2 AB AC BD. b) Kẻ OM vuông góc CD tại M. Tia BM cắt tia Ax tại I. Chứng minh AC CM CI 2) Cho ABC (AB AC) trọng tâm G. Qua G vẽ đường thẳng d cắt các cạnh AB AC lần lượt ở D và E. Chứng minh rằng 3 AB AC AD AE. + Một hộp đựng 20 quả bóng trong đó có 4 quả màu xanh, 5 quả màu trắng và 6 quả màu vàng (các quả còn lại khác màu nhau). Lấy ngẫu nhiên từ hộp ra 2 quả, tính xác suất để lấy được 2 quả cùng màu?
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Châu Đức - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Châu Đức, tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Châu Đức – BR VT : + Viết phương trình đường thẳng (d): y = ax + b (a khác 0). Biết (d) song song với đường thẳng y = 2x và (d) cắt trục hoành tại điểm có hoành độ bằng 3. + Cho hình thang ABCD (AB // CD; AB < CD). Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, AC, CD, DB. 1) Chứng minh tứ giác EFGH là hình bình hành. 2) Tìm điều kiện của hình thang ABCD để tứ giác EFGH là hình thoi. 3) Gọi O là giao điểm của AC và BD (với O nằm trong tứ giác EFGH). Chứng minh: S_OEH + S_OFG = 1/2.S_EFGH. + Cho hình bình hành ABCD. Từ một điểm G trên đường chéo AC kẻ đường thẳng bất kì cắt cạnh AB tại điểm E và cắt cạnh AD tại điểm F. Chứng minh rằng: AB AD AC AE AF AG.
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Yên Thế - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi văn hóa cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Yên Thế, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 28 tháng 02 năm 2024. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Yên Thế – Bắc Giang : + Một tổ sản xuất dự kiến mỗi ngày sản xuất được 45 sản phẩm. Thực tế mỗi ngày tổ sản xuất thêm được 15 sản phẩm so với kế hoạch nên đã hoàn thành sớm dự kiến 2 ngày và vượt được 100 sản phẩm. Tính tổng số sản phẩm tổ dự kiến sản xuất? + Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm, hai đường chéo AC, BD cắt nhau tại O. Qua điểm D kẻ đường thẳng d vuông góc với DB, d cắt tia BC tại E. Kẻ CH vuông góc với DE (H thuộc DE). a) Chứng minh DC2 = CH.DB. b) Tính độ dài CH và chứng minh: CD là tia phân giác của ACH. c) Gọi K, F lần lượt là giao điểm của EO với CH và CD. Chứng minh: EK.FO = EO.FK. + Cho hình thang vuông có một góc 45°, các cạnh đáy có độ dài lần lượt là 8cm và 12cm, diện tích của hình thang đó là?